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}ﬁ ..S. process. By virtue of such a !vectorizatlon". the propagation of the
Y contravariant and covariant metric tensors is shown to fit perfectly the variance
~% covariance propagation law and even to establish a weight propagation law. The
K opportunity to obtain variance-covariances and weights as a coherent part of the
. geometrical development provides the motivation for using tensor structure in the
o analysis of various L.S. methods and their properties.
f}: In principle, an isomorphism between adjustments and geometry is rooted in the
o notion that a consistent model relationship restricts a general vector to a "model
:j: surface"” (here a hyperplane). The mechanism is provided by the L.S. criterion,
o which projects an "observational vector" dx lying in an n-dimensional observational .
space orthogonally onto this u' -dimensional model surface. The projected vector is
attributed the dual notation dx'=du'. The observational space is spanned by n
Ek orthonormal vectors ¢, j, ... , v, ... , while the model surface embedded in it is
SN spanned by u' orthonormal vectors ¢, j, ... 1In the rank-deficient problems, where
1 the rank of the design matrix Is u' and the rank deficit is u”"=u-u', the model
L surface Is also embedded in a u-dimensional parametric space spanned by u
orthonormal vectors ¢, j, ... , t, ... , and is thus an intersection of the
5 observational and the parametric spaces. The observational -space contravariant
‘:4 components of dx' represent the adjusted observations, and the parametric-space
»j contravariant components of du' represent the adjusted parameters. These two kinds
i of components of the same geometrical object are related through the design matrix.
[y

The isomorphic geometrical setup reveals that all the adjustment matrices, i.e.,
the design matrix, the variance-covariance matrices (of observations, adjusted
observations, residuals, and parameters), and the corresponding weight matrices,
can be expressed as a product of two constituent matrices each. This outcome is
further qualified: (a) All constituent matrices are formed in terms of orthonormal
vectors, the elementary geometrical objects; (b) These vectors are the same in
either matrix of the constituent pair, only the type of their components may
differ; and (c¢) The set &, j, ... spanning the model surface is common to all
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o constituent matrices except those pertaining to the residuals.

i' The geometrical development yields a general L.S. resolution, where the solution
;f: vector du' and its variance covariance matrix a' are non-unique. This resolution
i’ is analyzed in three distinct formulations giving identical results. Two of these
> formulations utilize the matrix of minimal constraints, the first generating

J augmented observation equations and the second generating augmented normal

n} equations. The third formulation analyzes the parametric-space components of the
> A orthonormal vectors, showing that the properties of the resolution depend entirely
‘:f on u"xu' free elements grouped in the matrix AL". A completely arbitrary aL”

V: produces the general resolution with non unique du' and a'. A specific data
“:I dependent restriction on AL" yields the unique minimum norm solution du', but a
non unique a'.  Finally, {f AL" -0, both du' and a' are unique. In this case du’

15 the minimum norm solution as above and a' {s its variance-covariance matrix with
the minimum trace. [t can be concluded that the minimum trace criterion is

superior to any other. FKven if some of them produced unique du' and a', the norm
of du' would not be a minimum, or the trace of a' would not be a minimum, or both.
Other topics related to geometry with tensor structure are addressed as well.
An algorithm furnishing the pseudolnverse of a positive semi definite matrix, which
could be usefal for its straightforward geometrical interpretation as well as for
1ts computational efficiency, is developed as a by product of this analysis. The
Choleski algorithm for positive definite as well as positive semi definite matrices
1s interpreted in terms of orthonormal vector components.. Another item shows how

the tensor structure developed herein could be useful in ‘gpplications unrelated to
adjustment calculus, such as the transformation of multiple integrals.
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1
! 1. INTRODUCTION
)

N This study represents a continuation of efforts aimed at developing the

:: least--squares theory and results in a purely geometrical manner. It is based on
X {Blaha, 1984}, abbreviated here as [B]. One of the important limitations listed
%: in this reference is the full column rank of the design matrix of the parametric

- adjustment. As its title suggests, the present analysis is intended to extend

the scope of [B] by bridging this limitation. Undoubtedly, most or all of the

-
4

AL

others can similarly be bridged, one by one.

In both [B] and the present study, the various finite-dimensional spaces

are Riemannian, where the metric (or line element) is expressible by means of a

-

i 3P 3o & @

symmetric covariant tensor of second order. These spaces are considered only

2 within an infinitesimal neighborhood of the point called P, contained by all of
- them and corresponding to the point of Taylor expansion in the parent least-

. squares (L.S.) problem. In accordance with most adjustment applications, where
- all except the first (linear) terms in the expansion are ignored, the expanded
L.S. problem as treated here is linear, whether its original version was linear
o or not. The same statement applies, of course, also to [B], which expressly
avoided nonlinear adjustment. The above spaces can thus be regarded as
Eucledian (or flat), which, by definition, can be described over a finite region

in Cartesian coordinates.

F AV I b b §

-

In view of the foregoing, the term "surface" used in [B] means actually
"hyperplane”, since it is not limited to two dimensions and since it is
intrinsically a flat space. However, references to surface will be retained for

convenience, allowing for an easy transfer of familiar terminology, e.g. from

I AT ML

[Hotine, 1969]), concerned with two-dimensional surfaces embedded in a three-

dimensional space. This terminology should present no confusion since we know

.
..

that such surfaces will not be two-dimensional in general; as a special case,

the model "surface" could even be one-dimensional, reducing here to a straight

!
4 .\'
9
"

line through P, of which only a small segment in the neighborhood of P would be

of interest.

From the philosophical standpoint, the geometrical analysis of the rank
deficient parametric adjustment typifies the notion that could be dubbed an
"orthonormalization of the least -squares universe”. In this sense, the

fundamental bullding blocks consist of orthonormal vectors emanating from the

{ml PR oo J * el . ' '\' "-"-‘.".
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‘?? point P. These vectors are considered as fixed entities, and their subsets span
e the spaces and surfaces linked to the L.S. setup. Their components are
separated into contravariant (denoted by an upper index) and covariant (denoted

by a lower index) in accordance with the principles of tensor analysis, and are

ot '
;gﬁ regarded as point functions at P.

p2

A From the L.S. setup to the desired results including the variance- «
3?5 covariance and the weight matrices, the standard adjustment quantities can be

gs& represented by first- and second-order tensors. It is thus possible to express

55“ them in terms of the components of the above orthonormal vectors, which is

R indeed the main feature of both the previous and the current studies. This

“5' procedure, called in [B] "vectorization" of tensors, aliows for an easy and

D clearcut geometrical interpretation of the L.S. process. As a by-product, it

e circumvents the need to verify, at various stages of the development, whether

ﬁ": certain "objects” are tensors or not, which under different circumstances would

:l; be done by checking whether the tensor transformation law applies.

A

'tf% The vectorization of the metric tensor (in mathematical literature also

!$4 called the covariant metric tensor or the fundamental metric tensor) and the

-~

assocliated metric tensor (also called the contravariant metric tensor or the

conjugate metric tensor) is especially relevant in view of a complete treatment

of adjustment problems. By virtue of the vectorization, the "propagation" of

o

these tensors was shown in [B] to fit perfectly the variance-covariance !

propagation law and even to establish a weight propagation law. This indicates

o

that the vectorization is a tool whose potential is readily exploited in the

tensorjal environment. Without the use of tensor structure, with its

5 SO~ :
IRSEAE — “E ARl

contravariant and covariant versions of the metric tensor, the side-by-side

.-

derivation of these propagation laws would have been more difficult if not

i impossible. The opportunity to obtain the propagated varlance-covariances and
3## weights as a coherent part of the geometrical deve¢lopment constitutes a strong
a_t motivation for using tensor structure in the descripticn, treatment, and ,
‘1 analysis of various L.S. methods and their properties.
N,
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2. GEOMETRICAL SETUP

2.1 General Background

In pursuing the avenue of relating, for example, associated metric tensors
to variance-covariance matrices, one socon encounters rank-deficient symmetric
contravariant tensors which behave as the "regular” associated metric tensors at
P, but only when applied to tensors restricted to a given surface embedded in
some original space. In other words, they can be regarded as associated metric
tensors in spaces of lower dimensions than the original space, but expressed in
the full--dimensional form of the original space. They could be called
"restrictive associated metric tensors", "defective associated metric tensors”,
etc. However, for the reason explained below they will be called "necessary
associated metric tensors”. A similar description applies also when relating
metric tensors to weight matrices. In this case, the pertinent rank-deficient

covariant tensors will be called "necessary metric tensors". f

Suppose that an (original) n-dimensional space is spanned by n orthonormal
vectors denoted as ¢, j, ... , v, ... belonging to the point P, and that a
u'-dimensional surface of interest embedded in this space is spanned by u' of

these vectors, namely ¢, J, ... The associated metric tensor is then given as

grs = 0" e% 4 ers + L.t B e ,

while the necessary associated metric tensor is
,rs

PR L AU L L P

where the indices r and s, identifying the space components, range between 1 and

n. Both of these tensors raise the index of dx; representing the covariant
components of an arbitrary vector dx' lying in the surface. However, the use of
grs is sufficient, but not necessary. The tensor of the lowest rank that can

S

accomplish this is g'r , both necessary and sufficient, hence the attribute

"necessary"”.

In the present context, the n-dimensional space spanned by ¢, j, ... ,

v, ... is called "observational space", the u'-dimensional surface spanned by ¢,
j. ... is called "model surface", and a further n"-dimensional surface spanned
by v, ... Is called "error surface". The error surface Is an orthocomplement of
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the model surface in the observational space (all considered at P). The

necessary associated metric tensor for the error surface is written as

so that
=g' "+ g" . (1)

This relationship indicates a close analogy to

ax® = ax'" + axF, (2)
where the vector dx in the observational space is decomposed into two orthogonal
vectors, dx' lying in the model surface and dx" lying in the error surface. The
lengths (tensor invariants) of these three vectors are respectively ds, ds', and
ds”. All of the above tensor equations could, of course, be written with lower

indices instead, in which case the term "assoclated" would be dropped.

Similar to [B], the set of contravariant components dxr is considered to

represent observations in an adjustment model after linearization. It is

decomposed into dx;]) and dx?a), where the first set belongs to a vector

dx(l) lying in the model surface and the second set completes the system of

equations dxr=dx;x)+d (The restriction of dx

x?z). (1) to the model surface

can be thought of as the geometrical equivalent of a consistent model
relationship between the observables and the parameters.) In general, there

exists an Infinite number of solutions for dx® However, if the quadratic

(1)

s r
form dx(z)gsrdx(z), i.e., the square of the length of the vector dx(a),

should be a minimum, dx(z) must be orthogonal to the model surface and lies,

therefore, in the error surface. Consequently, the vectors dx(l) and dx(z)
become unique, such that dx(l)adx' and dx(z)sdx". Furthermore, the quadratic
form

ds"2 = dx"sgsrdx"r = minimum (3)

depicts the standard L.S. criterion written in adjustment notations as
VTPV£éTPé=minimum, where V=-2 represents the residuals (corresponding here

to —dx"r) and P, not to be confused with the point P, is the weight matrix of
observations (corresponding to gsr). The latter is defined as P=C-l, where C is

a given variance-covariance matrix of observations (corresponding to grs).

.......
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In expanding the present terminology, dx i1s called "observational vector",
dx' is called "model vector", and dx" is called "error vector"”, dx' peing an
orthogonal projection of dx on the model surface and dx" being an orthogonal
projection of dx on the error surface. The L.S. criterion is thus seen In the
geometrical context as minimizing the length of the error vector in the
observational space metricized by the weight matrix of observations. The
foregoing discussion is general, applicable to the full-rank and the rank-
deficient adjustments alike. The next section highlights the geometrical

distinction between the two kinds of adjustments.

2.2 Universal Space and its Partition

The vectors dx, dx', and dx" as introduced above are illustrated
schematically in Fig. 1. The model vector dx' is also denoted as du' depending
on the coordinate system used to express jits components. The geometry of these
vectors resembles that of Fig. 1 in [B], except that the observational space in
the present figure is two-dimensional, n=2 (instead of three-dimensional), and
the model surface is one-dimensional, u'=1 (instead of two-dimensional). The
error surface, in [B] called "second surface", is one-dimensional in both

illustrations, n"=1.

In considering rank-deficient adjustment problems, we define the model
surface as embedded not only in the observational space, but also in a new,
u-dimensional "parametric space". Compared to its full-rank counterpart, the
dimensionality of this geometrical setup is increased by u", where u" designates

the dimensions of a new subspace called "extension surface”. The latter is an

orthocomplement of the model surface in the parametric space, and is defined to

e be orthogonal to the observational space. Accordingly, the complete geometrical
;}i configuratiopr must be presented in an all-encompassing N-dimensional "universal
R space", where N=n+u"=n"+u, with u=u'+u". 1In the illustration of Fig. 1, the

e dimensions not listed above are u"=1, u=2, and N=3.

,-t_'

;:E If the extension surface were absent, i.e., if u"=0, the situation of

ﬁs: Fig. 1 would correspond to a full-rank L.S. setup. The universal space would be

identical to the observational space and the parametric space would be identical
to the model surface, hence N=n and u=u'. The model vector du' lying in the u'-

dimensional model surface would then be expressed in model-surface coordinates,

----- o e s
A
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Fig. 1

Symbolic representation, in the N-dimensional universal space (here N = 3),
of the observational vector dx and other related vectors in the ceometrical setup
corresponding to the rank-deficient parametric adjustment
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Y,
kn; i.e., it would have u' components of either kind (contravariant and covariant).
@' On the other hand, the rank-deficient L.S. setup corresponds to u">0 and thus

u>u', the model surface being a subspace of the parametric space as stated in

B

: 0 the preceding paragraph. In the geometrical representation, the rank-deficient
,:f L.S. setup is distinguished from its full-rank counterpart by the fact that the
(M

\_Lﬂ model vector du' lying in the u'-dimensional model surface is expressed in

parametric-space coordinates rather than in model-surface coordinates, i.e., it

has u>u' components of either kind.

o

b$ : The universal-space configuration corresponding to the rank-deficient L.S. |
" setup is elucidated via orthonormal vectors emanating from P. In particular,

EE&. the universal space is spanned by N orthonormal vectors v, ... , ¢, J, ... ., t,

:b ) ... , glving rise to its partition as follows:

'-:é'.r

st el

%»’ n" + u' = n -dimensional u' + u" = u -dimensional

';ﬁ observational space parametric space

O

_‘r: v, e T S (4)
A | !

- n" -dimensional : u' -dimensional : u" -dimensional

l\;‘ error surface I model surface ! extension surface

M

‘j The error surface is confirmed to be an orthocomplement of the model surface in

fjh the observational space, while the extension surface, spanned by the u"

é - orthonormal vectors t, ... , is confirmed to be an orthocomplement of the model

";5 surface in the parametric space. The extension surface could further be viewed

f.; as an orthocomplement of the observational space in the universal space, etc.

53% Moreover, the model surface {s seen to be an intersection of the observational

’S:; and the parametric spaces.

5;; The partition of the universal space in (4) indicates that more than one

v& coordinate system may become involved at various stages of the development. In

g¥$ addition to a coordinate system assoclated with the universal space itself, each

sk of the following spaces and surfaces are endowed with a coordinate system

‘! t symbolized by braces:

g

e

s 7

-
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observational space ..... {x }, r=1,2,....n; (5a)
parametric space ........ (ua), a=1,2,...,u; (5b)
model surface ........... (uL), L=1,2,...,u'; (5¢)
extension surface ....... (wA}, A=1,2,...,u". (5d)

The systems (5a,b,d) will serve in the next chapter to resolve the rank-
deficient L.S. setup. The systems (5c,d) will be used in the next section as a
stepping stone toward expressing a "rank-deficient design tensor” in terms of
partial derivatives. According to an earlier statement, the full-rank L.S.
setup would be characterized by an identity between the systems (5b) and (5c),
and by the absence of the system (5d).

We now present, in Table 1, tensor quantities expressed in the coordinate
systems (5a,b,d). They include first- and second-order contravariant tensors,
and second-order mixed tensors, all representing point functions at P. One can
imagine first- and second-order covariant tensors added to the table following
the pattern of its first two parts with all the indices lowered. Great many
tensor relations can be derived with the aid of this table, such as equations
(1) and (2) which can be read directly, or more complex expressions which can be
formed through tensor contractions. Thus, Table 1 will be relevant in much of

the geometrical development in this study.

The arrangement of spaces and surfaces in Table 1 conforms to their
representation in (4). Due to the vectorized formulation of all the tensors,
the latter are automatically classified in two respects, namely, according to

the space or surface in which they exist as geometrical objects, and according

to the coordinate system used to express their individual components. 1In

considering the first classification, one can write the identity dx'=du', for

'ﬁﬁ?ﬁiu‘
P W Wy N .

example, stating that the vectors dx' and du' are one and the same geometrical

Yo object, represented by "a" units along the vector ¢, "b" units along the vector

T aE 2
o T
PRSI

J, etc. With regard to the second classification, the component sets dx' " and
du'® are given a fundamentally different adjustment interpretation from one
another. With both sets referring to a linearized model, the former represents

ihe adjusted observations and the latter represents the adjusted parameters.
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dxn

observational space

error surface

parametric space

model surface

+

+

extension surface

w8

= Ra,B

= ¢ %P

+ bJP
+ b j°
+ bj‘x
+ bja
+ 3558
+ 370
A L
A L
r
e 35,
a
L
Table 1

z 1 +
z tA +
+ tatﬁ +
tatﬁ +
tAtO +
a
t tA +
tAt +
a

First- and second-order tensors in the partitioned universal space




2.3 Rank-Deficient Design Tensor

In this section, the tensor A: of Table 1, called the rank-deficient
design tensor, will be developed in terms of partial derivatives. This tensor
will thus be shown as structurally similar to its counterpart in [B}, which
reflected the actual formation of the design matrix in the full-rank context.
Indeed., the design matrix 1s constructed, in adjustment calculus, through first-
order partial derivatives of the observables with respect to the parameters
whether it is full-rank or rank-deficient. Showing that the design tensor
follows the same pattern further supports the analogy between the adjustment
theory and geometry. Moreover, this knowledge paves the way for the treatment
of nonlinear {and non-linearized) adjustment models containing higher-order

derivatives of the observables with respect to the parameters.

The initial step in the current development makes use of the coordinate
systems (5c,d). Merged together, these systems serve to define an interim
(overbarred) coordinate system for the parametric space, {ﬁa)=(uL.wA). An
important property of such an arrangement !s that the interim system is normal,
in the sense that the last u” components, contravariant and covariant, of
vectors lying in the model surface are zero, as are the first u' components of
vectors lying in the extension surface. It is thus a higher-dimensional
analogue of the normal coordinate systems in three dimensions as described in
Chapter 15 of [Hotine, 1969].

The above generalized statement will now be proved in detail. In analogy
to the N-surfaces of [Hotlne, 1969], where any such (two dimensional) surface is
characterized by a constant value of the third spatial coordinate (N),

a u'-dimensional surface embedded in a u dimensional space, where u=u'+u"”, is
now characterized by u” constant coordinates. In particular, the u-dimensional
space is the parametric space, the u” coordinates held constant are wA, and the
u' dimensional surface s the model surface with the (variable) coordinates uL
Since the latter are also the first u' of the space coordinates ha, any
displacement vector (du') on the surface expressed by the surface contravariant

components du'L has du'L also as the first u' space contravariant components,
p

the last u” such components being zero. This relutionship i{s symbolized by

ar(du’L.O). Applied to the orthonormal vectors R, j. ... , it yields
R TLN T -yt . . (6a)
10
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Since Eaia=0, Eaja=0. ... represent a nonsingular system of u’'
equations, the u' unknowns EL' L=4,2,...,u' are unique, all equal to zero.
This Is true for all u" orthonormal vectors t, ... spanning the extension

surface. However, little could be said about the covariant components ia'
Ja, ... if the last u" space coordinates were not at the same time the
extenslion-surface coordinates. But since wA have this property by construction,

in analogy to the preceding paragraph we first deduce that

@ - 0.% ., ., (6b)

where the extension-surface contravariant components of the vectors t, ... are
also their last u” space contravariant components. Now iafa=0,

represent a nonsingular system of u” equations, whereby the u" unknowns EA'

A=1,2,...,u" are unique, all equal to zero. This is true for all u' orthonormal
vectors ¢, j, ... spanning the model surface.
We next contract the partially known ia with ia, ]a, ... from (6a)

and obtain a nonsingular system of u' equations in u' unknowns EL‘
L=1,2,...,u'. However. in considering the model surface, the same equations

hold true also without the overbar. Since this argument again applies to al) of

¢, j, ... , it follows that
L = j = L 7
ﬂa (lL.O) ) Ja (jL.O) . ' (7a)
where QL' JL’ ... represent the model-surface components. Finally, upon
contractinyg the partially known Ea with £%, ... from (6b), we obtain a

nonsingular system of u” equations in u” unknowns, eventually resulting in

ta = (o,tA) A (7b)

where t,, ... represent the extension surface components. The outcome (6a)-(7b)

A
is possible only because the two groups of coordinates forming the interim

system are surface coordinates in their own right, and because the two surfaces

are orthocomplements of each other in the underlying parametric space.

To complete the discussion concerned with the interim coordinate systen, we

note that the associated metric tensor for the parametric space Is

L AU Ly .

11
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or

g'aﬁ = aLM ) AQ

( k) . (8a)

where aI'M and kAn are the associated metric tensors for the model surface and
for the extension surface, respectively. This follows from the standard

relations

IM L M 1. .M
a

A AL

1
(g
or

+

generalized from two to any dimensions. The symbolism in (8a) indicates that in
matrix notations, al‘M and kAn would form the diagonal submatrices, while the

off diagunal submatrices would be zero as one of the basic characteristics of a
normal system. In the same way, but with all the indices lowered, the metric

tensor for the parametric space can be written as

Baa (i, Kaa) - (8b)

In considering that the model surface is embedded in the observational
space, we can express each of the x° observational -space coordinates describing

this surface as some function of the model-surface coordinates uL, namely

xr = xr(uL); r=1,2,....,n; L-1,2,...,u'.

The ordinary rule of differentiation for this system of equations yields the
following linear relations between the observational space components dx'r and
the model -surface components du'L of the vector dx'=du' lying in the model

surface:
ax'" - (ax“/aulydut (9a)

If this formula, relating the space and the surface components of such vectors,

is in turn applied to ¢, j, ... , it follows that
ax" sau" - AE craL ' jer o (9b)

where use has been made of !LIMfJLJMO...-6:4 Equations (9a.b) appear in

a similar form in [B], and represent a higher dimensional analogue of the
formulas found in [Hotine, 1969), applicable to a two dimensional surface

embedded in a three dimensional space.
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The vectorized formulation of axr/auL seen above is based on the fact that
the model surface (with coordinates uL) is embedded in the observational space
(with coordinates xr). On the other hand, the extension surface (with
coordinates wA) has no dimension in common with the observational space, hence

axr/awA=0. When joined together, these two sets of partial derivatives yield

(ax"raut axTsaw’y - fTie o) o fTag 00

But in view of the interim system, the left hand side abhove can be written in a
compact form as 8xr/aua. while the components within the parentheses on the
right hand side are Qa' j ., ... by (7a). This relation can thus be

a
transcribed in tensor notations as

T a r r
) s} B A 10
ax u a j Ja . (10)

That (10) fs a tensor equation valld {n conjunction with any parametric-

space coordinates can be confirmed through the transformation formulas

B B

a a
'a = {au /9u )t ja = (du /3u )Jﬁ .

8

where the coordinates uB belong to the general system (5h). These relations are
subst tuted in (10), the latter is contracted by aua/au’, use is made of
(AuB aualléua au’\-auﬁ/au7:5€ and, finally, the index 7y is substituted

for by a The result, where the (nterim system is no longer needed. reads
axt dua=Aa e oo Ty e (11)

Equation (11) represents the complete description of the rank deficient des:gn
tensor, whose full rank counterpart played a central role in [B] Although this
reference displayed the full rank design tensor in the form (11), in the present
notations it would be properly represented by (9b). In considering that the
model surface |s also embedded in the parametric space, we could introduce a
relation similar to (9b), where the symbol x would be replaced by u and all the

indices r would be replaced hy a Equations (9b) and (11) togethir with this

new relation would then confirm. through tensor contractions. the validity of

7 ‘ ,
o the chain rate 3x" 2ab (ax" ) (au®raal)

) As their structure reveals, the partial derivatives forming the design
tensor in (11) transform the contravariant components of vectors lying tn the

a
model surface from the parametric space coordinate gystem {u '} to the

.
3
r

V: observational space coordlinate system (x } This property. fundamental to the
ok
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treatment of a rank-deficient adjustment model via an isomorphic geometrical

setup, is utilizei in the form

dx'’ - A;du’a . (12)

where the notations du' and dx' designate the same vector as pointed out
earlier. This equation was already implied by Table 1, where the design tensor
was defined in anticipation of the result (11). As a matter of interest, we
note that a relation similar to (12) could be written with du replacing du',
where du is a vector from the parametric space such that dua=du'a*du"a as
suggested by Table 1. This stems from the fact that the components du"® of a

vector lying in the extension surface yield zero when contracted with A;.

In matrix notatlons, the rank deficient design tensor A: is written as A,
the familiar design matrix. Following the conventions of {B]) for second-order
tensors, the first and tne second indices refer to rows and columns,
respectively. in the case of a mixed tensor such as A;, the contravariant
index is considered as its first and the covariant index as its second. By
virtue of (11). the design matrix can be decomposed into a product of two

matrices as follows:

[er’aua] = A = F L'T , (13a)
(nxu) {nxu') (u'xu)
where
, r,. .r ) .
Fooreqriy o1 Le [[!aJ[Jal AP I (13b,c)

A whire [ﬂ'], etc., represent column vectors. The matrix F is rectangular, of
dimensions {(nxu') and the full column rank u', and the matrix L‘T is rectangular
of dimensions (u'xu) and the full row rank u'. In the case of (9b). the number
of columns in the latter matrix would reduce to u', making it regular, i.e_
square and nonsingular, and resulting in the full rank design matrix particular
to (R} Although both F and L‘T consjdered at the present have the full (column

ot row) rank individually, their product in (13a) is rank deficient, the rank

deficiency being u u' u” The design matrix A of dimensions (nxu) and rank u',
where n»>u . characterizes the rank deficient parametric adjustment. We note
that if n u'. the model surface would coincide with the observational space and
no IS adjustment would take place
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Similar to the full-rank case, the advantages of the geometrical approach

to the analysis of the rank-deficient design matrix are readily apparent:

1) The design matrix Is decomposed into the product of two constituent

matrices;

2) The latter are written in terms of orthonormal vectors, the elementary

geometrical entities; and

3) These vectors are the same for both constituent matrices, only the type of

their components differs.

The decomposition of the rank-deficient design matrix A offers geometrical
insight that cannot be gathered from algebraic considerations usually based on
the column space of A in its original form, not on spaces associated with the

more elementary matrices seen above.

2.4 Propagation of Contravariant and Covariant Metric Tensors

We have seen that the u'-dimensional model surface, spanned by u'
orthonormal vectors &, j, ... , is embedded in the n-dimensional observational
space, spanned by n orthonormal vectors ¢, j, ... , v, ... The model surface is
also embedded in the u-dimensional parametric space, spanned by u orthonormal
vectors £, J, ... , t, ... The rank deficiency is rooted in the fact that the
vectors lying in the model surface, including ¢, j, ... themselves, are
expressed by u parametric-space components (u>u') rather than by u' model -

surface components as in the full-rank setup of [B].

The above reference established a perfect correspondence between the
propagation of associated metric tensors and the variance-covariance propagation
law, and between the propagation of metric tensors and the weight propagation
law. For the most part, however, this isomorphism was proven in conjunction
with vectors lying in the model surface and expressed through the model-surface
components. The scope of the proof will now be extended by showing that the
same correspondence can be established if the parametric-space components are
used fnstead. Similar to [B], below we list relationships between vector

components, and next to them (separated by dots) formulate the corresponding

15
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§
f}.: relationships between contravariant or covariant metric tensors. Any of these
Kt
h“: relationships can be written at once with the aid of Table 1.
'.’_‘
' In particular, this table (including its extensions to the covariant
o
13! components) vyields
t;ﬁ
b
B >, a a r a.r af a ,rs B a rs_B
Al ! = v = ' = ' =
o du Qrdx Qrdx ..... a Qrg QS Qrg Qs . (14a,b)
e s s s r ] r
et ! = ''= A dx  ..... : = ! = . 14 ’
ﬂgs duB Ades Aﬁdxs aﬂa AﬁgsrAa AﬁgarAa (14c,d)
l."
ﬁaﬁ Equations (14a-d) depict what could be termed the situation n-u', indicating
3t ‘.
i that components in n dimensions are transformed into components in u’
e dimensions. Similarly, we deduce
A ‘xl
gy O ,re @ T a ,r8_ r_,af,s _,r _aB.,s
:fq dx Aadu Aadu ..... g Aaa AB Aaa Aﬁ , (15a,b)
:::p%
) :. [ B [ ﬁ ] - B ] x — B a
:“; dxs = Qsdu‘s = QsduB ..... 8 ° Qsaﬁaqr = QsaBaQr (15c¢,d)
'
Y
fjhﬁ Fquations (15a-d) depict the situation called u'-n. The (associated) metric
oW
.q tensors attributed a prime are the "necessary” tensors as described earlier.
H Tahble 1 shows that the Q-tensor is related to the A-tensor through
.- a __af.s
:;d' Qr = a Aﬂgsr , (15¢,
::? where the a- and/or g-tensors could be replaced by their primed counterparts.
B -
.\Q We present an additional case of interest, called the situation u'-m, which
dhy
¢ o is conceptually quite similar to the situation u'-n reflected in (15a-d). It is
P,
.\ﬁ based on an m-dimensional "functional space”, which is yet another space
N a
- containing the model surface, hence m>u'. This space could be thought of as
embedded in the observational space, identical to it, or containing it,
[
'e‘t corresponding to m<n, m=n, or m>n, regpectively. Much like the observational
N
t; space, the functional space iIntersects the parametric space in the model
o
(f*f surface, and has no dimension in common with the extension surface. We could
ol thus imagine it as replacing temporarily the observational space, in which case
Y
:uj all the tensors in Table 1 having r and/or s as indices would be attributed the
l\d
}:4 symbol ., and the lower case Roman letters themselves would be replaced by
)
*?4 another kind of indices whose range would extend from 1 to m (instead of 1 to
I n) Except for these changes, the basic relations (15a - d) could be rewritten as
:cﬁ they stand, and the same applies for the connecting equatton (15e). One could
"
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even retrace the steps (9a)-(11) and represent the new A-tensor in terms
of partial derivatives by rewriting (11) with the same notational changes.
Clearly, the rank of the A- and 6~tensors would be u' by construction, the same

as the rank of their counterparts in (15a-e).

If only the first m_  of the m functional-space vector components were of

1
any relevance, the computation of the corresponding (associated) metric tensor
would likewise be limited to its first n xm, components. If, similarly, only

-l<u' functional -space components of the A- and/or b-tensors were known, one
could imagine thelir range extended through m>u' to ensure the validity of the
relationships described in the previous paragraph. The actual components would
subsequently be computed only to within the fist .1 for the desired vector and
to within the first m_ xm, for the corresponding (associated) metric tensor,

i.e., the parts llagliedlfor the sake of the theory would be disregarded. We
can thus conclude that whether the number of functional-space components in the
A- and/or 6ntensors is larger than u' or not, the resulting vector components
and the corresponding (associated) metric tensor components follow the pattern

of (15a-d).

In order to highlight the isomorphism between the propagation of
contravariant or covariant metric tensors in the geometrical context and the
propagation of variance-covariance or weight matrices in the adjustment context,
we transcribe (14a)-(15d) in matrix notations. In so doing, we adopt the
“traditional identification” of (B], whereby associated metric tensors
correspond to variance-covariance matrices and metric tensors correspond to
weight matrices. Due to {ts adjustment appeal, this identification was
preferred in [B] to the "new identification” with reversed correspondences,
although both identifications were shown to lead to identical results. 1n
concentrating on the variance-covarjance matrices first, we transcribe (14a,b)
and (15a.b) as

T

du' = Qdx' Qe'Q" - qgqQ’ . (1a'a,b)

)
(=]
a
F
Y
0

g': dx' = Adu’
.

Aa'AT = AaAT . (15'a,b)

)
>
=¥
[ =

"
h

ﬁ The connection between Q and A is provided by

N aATg‘ R (]5'9)
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which follows from (15e), and where the matrices a and/or g* could be attributed
a prime.

As can be gathered from these relations, all of the first- and second-order
contravariant or mixed tensors keep their symbols also in matrix notations,
except that the indices are dropped. This simplifies the notational conventions
used in [B), where a new set of symbols was introduced in matrix notations in
order to conform more closely to adjustment notations. No confusion should
arise from a dual role of the symbol dx, for example, which in one context
designates a geometrical object associated with the component set dxr. and in
the other expresses the set dx" as a column vector. In (14'a,b) and (15'a,b),
the variance-covariance matrices corresponding to the (column) vectors dx, dx',
du, and du' are g, g', a, and a', respectively. These equations express the
familiar variance-covariance propagation law of adjustment calculus, valid
whether or not any of the matrices are rank-deficient. The case described above
in conjunction with the functional space would be included in (15'a,b), except
that dx', A, and g' would be attributed the symbol . It would correspond to
the variance-covariance propagation applied to linear functions of du'. In

retrospect, this fact provided the motivation for the term “"functional space".

According to the discussion that followed (15e), the matrix A can be
written as

A = FL*
which is the functional-space version of (13a). As a matter of interest, we

also present this matrix in the form

A - RA . R - FF g* |
where R has the dimensions (mxn) and the rank u'. The second of the above
formulas has been obtained from both versions of (13a) together with the
identity PTg‘F‘I. but in the present context it is not needed. Although the
situation u'-m is illustrated sufficiently well by equations (15'a,b) in their

functional -space version, we can substitute A=RA in the latter and wrile

dx' - Rdx' ..... é' = Rg'R’

18
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‘s, ¥,
5%
;:: where use has been made of equations (15'a,b) in their original version. This
b 0
uﬂq formulation further highlights the isomorphism between the associated metric
) _ tensors and the variance-covariance matrices.
o
.jl. The first- and second-order covariant tensors keep their symbols in matrix
.ji: notations as well (with the indices dropped), but are attributed * to be
TN - distinguished from their contravariant counterparts. The relations (14c,d) and
ﬂ\ ) (15c,d) are thus transcribed as
A
5'4.'
ol du*' = ATdxs' = aTax* ..... a*' = ATge'a = ATgea (14'c,d)
A,
A 2 - oTqus' = ol dut Y T e T « t
dx = Q du Q du* ..... g = Q a*'Q = Q a*Q . (15'c,d)
ARd The weight matrices corresponding to the adjustment vectors dx, dx', du, and du'
}:‘ are g*, g*', a*, and a*', respectively. 1In (14'c,d) and (15'c,d), the weight
o,
Sy matrices are related to the covariant version of the pertinent vectors through
1A a structure resembling (i4'a,b) and (15'a,b) and characterizing the weight
5:?5 propagation law.
=
)
,iﬁj Equations (15'c,d) with ~ attributed to dx*', Q, and g*' reflect the
Ao functional-space context. Equation (15'e) is valid here in the form
0~ - ~T ~
o Q-ahgr,
o ;
e where the matrices a and/or g* could again be attributed a prime. In
O v
”f;' paralleling the development of the previous paragraph, we could show that
e ~ T~
YOO Q =QSs , s - FF g* |
J‘:J
;f“} where S has the dimensions (nxm) and the rank u'. Finally, in utilizing both
g
‘~3f versions of (15'c,d) in conjunction with the first formula above, we obtain
);{. dx*' = STdx*' ..... g*' = STg*'S ,
n..".'
ffﬁ which further confirms the pattern characterizing the weight propagation law.
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S 3. UNIVERSAL-SPACE FORMULATION

3.1 Appeal of the liniversal Space

‘{;: The rank-deficient parametric adjustment differs from most practical '

;?; adjustments in one important aspect, the rank deficiency of the design matrix A.

;’. In tensor notations, the rank-deficient L.S. setup 1s represented by -

F%: dx® = A"du'® + ax"T , (16)

:E *

.hH where the first term on the right-hand side is equal to dx'r in accordance with
(12). Equation (16) closely resembles the situation depicted in [B] in all

.ﬁ:: respects but the rank deficiency of the design tensor A:. In familiar

3:5: adjustment notations, (16) would be transcribed as

-f‘_'.

o L =AX -V,

_;(% where L, X, and V are the vectors of constant terms, parametric corrections, and

j}i residuals, respectively. The vector L is formed as Lb-Lo, where Lb contains

iij observations and L® contains values of the observables consistent with an
initial set of parameters. As can be gathered from Table 1, the geometry

%:? corresponding to a rank-deficient model yields the relations equivalent to

:iﬁ singular normal equations in adjustment calculus:

L al du'® = du’ : (17a)

Ba 8

‘;f aéa = A;gsrA; , dué = A;gsrdxr R (17b,c)

:ig where dxr, Ar, and €gp are given. Although all tensors in (17a-c) except du'a

:?’ are kncwn, the latter cannot be computed from (17a) without further

gf, stipulations, due to the singularity of aéa. the necessary metric tensor.

Just as du'® represents the parametric corrections in tensor notations, the
necessary associated metric tensor a’aB corresponds to the variance-covariance
matrix of parameters. As Table 1 suggests, both these quantitlies can be

expressed in theory with the aid of the associlated metric tensor of the

parametric space, aaﬁ:
« af ap
du'” = a "dul = a' " dul , 18a)
8 8 (
a'aB = a%Ta; aaﬁ = aaB - aara” aaﬁ , (18b)
1£2 ré

20
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where the second equality in (18b) is the consequence of a" ' =a araa . The
tensor aaﬁ can be obtained from

af a

a a =6 |, 19

Br 14 (19)
provided the metric tensor aBa is known.
Under the same assumption of known aBa' the tensors dx'r and g'rs are given

by (15a,b), namely

dx' " = A:du'a , (20a)

,r8 _ ,r a8, s _.r ,af s

g Aaa Aﬁ Aaa AB . (20b)

Parallel to (18b), Table 1 yields the tensor g;r as

v , pq
8sr = Bgpf gqr ) (21)

which follows also from (15d) with (15e). The tensors dx'r, g,rs' and gér
correspond to the adjusted observations in a linearized model, their variance-
covariance matrix, and their weight matrix, respectively. As has been stated in
the previous chapter, the pertinent functional-space contravariant tensors would
be treated in compiete analogy to dx'r and g,rs from (20a,b), except that dx'r,
g'rs, and A: would be attributed the symbol . On the other hand, one cannot
compute é'sr in a functional-space version of (21) because the metric tensor in

the functional space is unknown.

The foregoing represents a simple and plausible resolution of the rank-
deficient model, hinging only on the availability of the metric tensor aﬁa'
Unfortunately, this model offers no tensor relation containing aBa’ and no
indication of how the latter could be obtained. But it is clear that if the
isomorphic geometrical setup could be "enlarged" into one where the parametric
space constituted a proper model surface, the metric tensor for such a surface
could be expressed following the simple approach of [B]. One is thus motivated
to turn to the universal space in the role of an enlarged observational space,
guided by the realization that the parametric space can indeed be considered as

a new model surface embedded in the enlarged observationei space.

21
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3.2 Basic Universal-Space Setup

In pursuing the idea suggested in the previous section, we present a
geometrical situation called "modified”, where the model surface Is extended to
coincide with the parametric space. The latter is embedded in the universal

space by construction. The modified surface, endowed with the coordinate system

{ua), a=1,2,...,u, is spanned by u orthonormal vectors &, j, ... t, ... And the
universal space, endowed with the coordinate system {XR), R-=1,2,...,N, is
spanned by N=u+n" orthonormal vectors ¢, j, ... , t, ... , v, ... Suppose

momentarily that the following three tensors are known:

dXR = aQR + bjR oL+ ztR ... un + ..., (22a)

AR ax®rau® = ofe + 3Ry v s Re s (22b)
a a a a

gRS = QRQS + jRjS + ...+ thS + oL, vRuS L (22c¢)

This case would then represent the situation discussed in (B}, if one overlooks
the conceptually unimportant addition of t, ... to the original set of u' model-

surface base vectors ¢, j,
A full-rank L.S. setup now corresponds to
ax® = ax® . oaxeR (23a)
ax® < Atdu® (23b)

where dX' and du are Lhe same geometrical object expressed in different

coordinate systems, represented by "a" units along the vector ¢, "b" units along

the vector j, ... , "z" units along the vector t, ... On the other hand, dX' is
represented by "“g" units along the vector v, ... Similar to [B], the relation
s R, ,a .S R
(ABgSRAa)du = AﬁgSRdx . (24)

where the tensor in parentheses is the metric tensor aBa of the modified model

surface, 1s equivalent to (nonsingular} normal equations.

The metric tensor gSR needed in (24) can be computed from the associated

af

metric tensor gR'. Similarly, a can be computed from a

B

Ba’ giving rise to the

. a a
solution du =a

du,, where

8




« at® + bja + .. zta + ...,

6, LA

du

1

aB Qagﬁ . JaJ

a
which already appeared in Table 1. The analytical form of the covariant tensors
duB and aBa taking part in (24) would be written in analogy to the above, with
subscripts replacing the superscripts. Paralleling the demonstration in [B],

the standard L.S. criterion is reflected by

2

dX”sgSRdX"R =q + ... = minimum . (25)

3.3 First Stipulation

The case presented above is of little practical use because none of the
quantities dXR. Az. and gRs is part of an actual geometrical setup. But upon
using two stipulations, such a system can be developed into one featuring
gquantities that are either known from the rank-deficient model or can be chosen
essentially arbitrarily. The first stipulation affects vectors' configuration
by restricting dX to the original (n-dimensional) observational space, i.e., by
enforcing z=...=0. This means that the orthonormal vectors t, ... no longer
play any role in describing dX, dX', or du. Since the vector dX' and its
equivalent, du, are now restricted to the original (u'-dimensional) model
surface, it is more convenient to replace the notation du by du' and write
dX'=du'

Consistent with the first stipulation, (22a) becomes
dXR = aQR + bjR oLt un + L. (26a)

For the sake of completeness, we also list

ax'R-aeRop®e ., (26b)

dX”R

un L (26¢)

The vector du' 1Is expressed as in Table 1. With regard to the geometrical
representation, equations (26a-c) and Table 1 indicate that the vectors dX,
dX'=du', and dX" are the same objects as dx, dx'=du', and dx", respectively.
Thus, in considering Fig. 1, the vector denoted dx could be described by the
symbols dX, dx: the vector denoted dx', du' could be described by the symbols
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;2. dX', dx', du'; and the vector denoted dx" could be described by the symbols
I
o dx", dx".
g The first stipulation has not changed anything on tensors in (22b,c). And
g
.~j although it has altered the geometry of dX and dX', it has not affected the form
.
Ny . .
‘Y of (23a) as is readily apparent from (26a-c). Equations (23b) and (24) also
A remaln the same, except that the notation du' now replaces du. With this
R change, equations (23a,b) are recapitulated for future reference as
Nl
e a® - ax® o oaxeR (27a)
)
)
e ax® - Alau® (27b)
-
:ﬁj In the same vein, (24) is recapitulated in the form
\:~ «
o a_ du' = du} ; 28a
).‘ Ba 8 ( )
. - AS R v _ AS R
e aﬁa ABgSRAB . duﬁ Ap“sndx . (28b,c)
A
A -:.n
we 3.4 Second Stipulation
:‘;q The second stipulation pertains to the choice of the universal space
! i& coordinate system, and, as such, cannot be included in Fig. 1 or a similar
"+
o ﬁ geomelrical Lllustration. This coordinate system is defined by
DA,
. ) - oMy (29)
\
:{ where (xr} and {w } represent coordinate systems in their own right. The latter
S
iﬁ; are depicted in (5a) and (5d)., and belong to the observational space and the

extension surface, respectively. Since the observational space and the
extension surface are orthocomplements of each other in the universal space, it
follows in perfect analogy to the interim coordinate system of Chapter 2 that
the universal space coordinate system is normal. In drawing on this analogy, we
can state that the last u” universal-space components, contravariant and
covarfant, of vectors lying in the observational space are zero, as are the
first n components of vectors lying in the extension surface. The remaining
universal space components are f{dentical to their counterparts formed {n the
respective subspaces. These properties are used extensively in the next three

paragraphs.
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! :ﬁ The universal -space components of the orthonormal vectors lying in the
o
T* observational space are
Q‘Q
R
» ¢ - (e 0, Rt o R0, (30a)
_:’:
j:ﬁ QR = (Qr,o) JR = (jr,O) SETEENN (ur.O) . e (30b)
2x ‘ while the components of the orthonormal vectors lying in the extension surface
. are
7 T S S (30c)
g
\I
T
T: tR = (O,tA) . (30d)
With (30a-d). the unknown tensors of the universal -space setup capn easily be
’I -
a:. separated into those given as a part of the original rank deficient model, and
o
;ﬁ those that are unknown but can be chosen at will (subject to some general
N
j*ﬁ restrictions). For example, the components in (26a c) are seen to be
. :
a® - xR @t w® ko). (3tabic)
£ R
P which +ould also he written in the covariant version. The entire set d is now
'.--
e known because the set dx' represents the known components of the observational
.~ vector.
Ly
[
:ﬂi If we apply equations (30a,c) to (22b), we obtain
o
o~ ANl (32)
a a’'Ta
J
‘yg; where both tensors on the right-hand side appeared in Table 1. If the same
'[15 equations are further applied to (22c¢), it follows that
2
' O RS
o g (@M (33)
lii where both tensors on the right hand side also appeared in Table 1. FEquation
;& (33) can be related to the normal system described by (8a) and the text that
ljij followed. Similar to (8b), we also have
AL
= 34
'u'S Fsr (gsr'kQA) . (34)
i;i Equations (32)-(34) contain tensors which are known from the rank deficient
:}: model, namely Ar, grs’ and gqr' 48 well as tensors which are as yet unknown,
namely Q:, kA”. and kﬂA' We notice that with (31c) and (34), the quadratic
[ form (25) becomes
oo
7
e 25
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dx"sggrdx"r q2 ¢ .. = minimum (35)

which corresponds to the standard L.S. criterion in the original formulation
{full rank as well as rank-deficient). This confirms that the basic premise of
the geometrical setup is kept intact by the universal-space approach. .
Finally, using (31a c¢) and (32). we can rewrite (27a.b) as
r

(dx" . 0) (A;,Q[;)du‘a + dx"".0) . (36)

Similarly, using (31a), (32), and (34) in equations (28a c), we obtain

la 1 .
dBadu duﬁ ; (37a)
“ A0 - aS r w Loaf A
aSQ 2 dﬁa + aBa , di AﬁgsrAa , aﬁa QBKQAQa ; (37b,c.d)
. a8 r
d“ﬁ Aﬁgsrdx . {37e)

The above relations, consistent with Table 1, represent normal equations in the
universal space approach. As their notations indicate, the necessary metric

tensors a and a, pertain respectively to the model surface and to the

Sa Ba

extension surface. The tensors aéa and dué are known from the rank
deficient formulation of normdal equations., and are given explicitly in (17b,c),
while the tensor aéa is as yet unknown.

3.5 General Form of the Universal-Space Resolution

The foregoing development has i{llustrated that although the notion of
normal coordinates plays a substantial role in the derivation of tensor

equat ions suited to our nceds, the coordinates themselves are neither needed nor

ﬁ%% known. Indeed, if tensor equations are established in one coordinate system,
?%:? they are valid in any coordinates. As a fundamental feature ¢f this chapter,
;1: such equations. formulated in the universal space endowed with the normal
= coordinate system {XR}, allow us to transfer the desired tensors from the rank- T
Vﬁﬁ deficient context to the familfar full-rank context. This advantage is best
555 reflected by comparing equations (17a) and (37a)., where the singular tensor 1
:%3 dé“ in the former is replaced by the nonsingular tensor aﬁa in the latter.
iii The formulation of the basic quantities du'a and a'aB then proceeds as in (18a)
§§g and (18b), respectively. And the formulation of dx‘r, g‘rs. gér, and the
fqﬁ remaining quantities of interest proceeds as outlined in (20a) (21) and the text

"

-
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that followed

as yet unknown

Equations

an essentially

made through k

in a, but other

.. S criterion

Although t

arbitrariness |

present study,

provides additi

the full rank |

NA
{symmetric), but otherwlse can be completely arbitrary. The tensor Q: aust

have the full r

outcome for the basic tensors du'a and a'

orthonormal vec

are thus expressible through a

We have thus witnessed how the universal space approach

facilitates the resolution of the rank deficient model conceptually. through

tensor equations. In the next step, we address the task of choosing the tensors

in order to resolve this model numerically as well

(37b-d) show that a is obtained from a. by the addition of
Ba Ba

arbitrary tensor a, . The choice of the elements of a. i

A Sa Sa
and Qa‘ The tensor kQA must be positive definite

ank in A, and, when jolined to A;. must form a full rank tensor

wise can also be completely arbitrary. As the process leading

from (25) to (5) attests, the chofce of these two tensors has no bearing on the

he rank deficlent setup is now solved in general, the numerical

af

i8 non unique, due to the

noAa propagated into a The nature of this arbitrariness

Ba Ba

could be related tu the coordinate system (ua) and its variations, but the

concerned with tensor relations and tensor components, has no

need tu link the latter to any coordinates explicitly. We observe. however,

rs

that the tensors dx'r, g' . and gér from (20a,b) and (21) are unique.

A similar statement can be made with respect to the functional space version of
(20a.b). whereas such a4 version is inconsequential for (21) due to the unknown
metric tensor ésr The uniqueness property is rooted in the fact that the

a )
ccmponents expressed in terms of {(u )} are eliminated by tensor contractions.

We note that [f the tensor 02 were given, the outcome for du'a and a'aﬁ
would also be unique. regardless of kQA‘ This stems from the fact that
a A a
: 0
aBaQ QB . Qaﬂ

and from similar ident{tfes for the parametric -space components of the remaining

tors lying in the model surface, j, ... The first identity

a .
offers u' independent relations for ¢ . a- 1,2, .u, and the second identaty

. a a
onal u” independent relations. The component sets ¢ |

'

Ba and Q:, with kQA playing no role at all.

Implied in this demonstration {s the requirement that (a’a,Qg) must have

A A

n o which is satisfied due to the above condition for Qu
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ln principle. with only déu and dué known, the outcome for aéa. aﬂa' aaB,
and a"aﬂ is affected by both tensors kOA and Qg. the outcome for du'a and
d,aﬂ is affected by Q: alone. and the outcome for dx‘r, g,rs, etc | discussed

{n the previous paragraph, is unique, affected by neither of the two tensors

We now summarize the key formulas from this chapter, transcribing them in
malrix notations daccording to the simple convention introduced earlier (the
indices are dropped and the symbols representing covariant tensors are
attraibuted ®) We begin with the universal space setup (36), which now reads

dx S A rdx”
du’ - . (38)

whete the fiest matrix on the right hand side has the full column rank u.  Since
u §s the smallest possible number of rows which. when augmenting A, can rdafse
it~ rank to u, the second equation in (38) represents what is referred to in
adinstment literature as minimal constraints, Q being the minimal constraint
mAtr1x In practice. this matrix is often supplied or chosen beforehand It 1s
currently regarded as arbitrary, provided it fulfills the conditions

rank(Q) - u’ ., rank (39a.b)

| S
c

T A
i

L Q
cleariy, {(39b) could not hold true without (39a) Although the necessary
condirtion (39a) need not be listed separately, it can serve in a4 first instance

scrutiny of @ The rank condition {39b) could equivalently be written with

a* replaving A

The universal space approach treats {(38) as a full rank adjustment model
with the weight matrix diag. (g*.k*). The latter {8 composed of the diagonal
submsatrices g* and k*, while the off diagonal submatrices are zero. The symbols
1* and k* denote weight matrices in their own right, the first beijonging to the
ohservational space and the second belonging to the extension surface The
positive definite (symmetric) matrix g* is the weight matrix of observations
nbtarned as g* ¢ ], where g is a given variance covarijance matrix of
observations On the other hand, the symmetric matrix k* is arbitrary. subject
snly to the condition that it must be positive definite The geometrical

nsiderations above have indicated that although k* affects a*". a*. a. and a”,

this matiix has no bearing on the determination of du’ and a'° (in addition to

28
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2*’ dx', g'. etc.). This is consistent with the statement on page 17 of [Pope,
B,
‘@ 1973]. that "minimally constrained solutions do not depend on I associated with
the minimal constraint”, where £ is our (k‘)~l-k.
]?.
: In forming normal equations from (38), one obtains formulas paralleling
d o
#5{ (37a e)-
l'..
) a*du’ du®*' ; (40a)
.v' . . . . T . " AT 5N .
. Aa* - a + a . a = A g®*A a = Q k*Q . (40b, ¢ .d)
[
:’f T
;; du*' - A g*dx . (40¢)
W7
& Here the quantities known from the rank-deficient L.S. selup are A {(the design
tj matrix). ¢* (the weight matrix of observations), and dx (the vector of
\
-2: observations in a linearized model), which give rise to a*' (the singular matrix
.;V of normal equations) and du®*’' (the right-hand side of normal equations).
:;L According to (18a.b), du' and its variance covarjance matrix a' are computed
-
:: from
:‘ du’ adu®*' - a'du*' . (41a)
..
a’ aa*'a = a aa*"a , {(41b)

where, in view of (19),
1
a {a*) . (42)

The second equality tn (41b) uses the fact that a"-aa*"a. The second equalities

in both of (41a.b) can serve for verifjcation purposes.

With regard to the vector dx' containing the adjusted observations in a
linearized model . and to {ts vartfance covariance matrix g'. from (20a.b) we

transorihe

dx Adu’ | (43a)
'
] g AaA' - Aa'AT (43b)
The second equality in (43b) can again serve for verifications. 1f needed, the

welght matrix ¢g* associated with dx’ can be transcribed from (21) as

v g*e g* (44)

-

XA

A AR

R
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Although the matrix a*" in (40d) and thus also a*, a, and a" are non-unique due
to admissible variations in 6 and k*, and although the matrix a' as well as

the vector du' are non-unique due to admissible variations in Q alone, the

q - tities dx', g', and g*' above are unique. Equations (43a,b) could also be
used in conjunction with linear functions of du’', in which case A, dx'. and g'
would be attributed the symbol “. The vector dx' and its variance-covariance
matrix é' would then be unique as well. On the other hand, the weight matrix
é" could not be computed in analogy to (44) because é‘ is unknown. Since the
solution du’ and its variance-covariance matrix a' become unique if Q is

specified numerically, the latter will be subject to further discussion.
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4. MINIMAL-CONSTRAINT FORMULATION

4.1 Geometrical Background

The treatment of the rank-deficient adjustment in the preceding chapter has
resulted in an extended full-rank formulation, such as presented in (38) and
beyond. Here we describe another approach, where the rank-deficient adjustment
is addressed via minimal constraints. We begin with a geometrical setup in the
universal space, comprising two sets of equations. The first set depicts the
rank deficient L.S. setup (16), or, equivalently, the tensor form of singular

normal equations appearing in (17a):

a, du'" = du! . (45a)

éﬁdu'" -0, (45b)

which, in itself, is an identity as indicated by Table 1. But when considered
in conjunction with (45a), it ensures that du'® cannot be substituted for by

a a a a
du =du’' +du”

ensures that the model vector du' cannot be substituted for by a general vector

with a nonzero set du” In terms of geometrical objects, it
du from the parametric space as could be done in (45a) alone, i.e., that du"=o0,

where du” is a vector lying in the extension surface.

In elaborating on this assertion, we express the components of a vector
lying in the extension surface in two coordinate systems. We use the system
(ua) from (5b), in which case the vector is symbolized by du”, and the system
{wA) from (5d), in which case it is symbolized by dw. The geometrical object
du”=dw is described analytically in Table 1. This table enables us to relate

component sets of du"=dw to each other through the Q-tensor by
du’ = Q. dw. . (46a,b)

[f du”=dw is a zero vector, all its components are zero in any coordinates, and
vice versa. Suppose now that the component set du'a in (45a,b) is substituted

for by dua=du'a*du"a. The new equation (45b) then becomes

Ay e A e SA L« - A
0 = Qadu Qadu = Qadu dw
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o
x: : where use has been made of (46a). But this means that du” dw is restricted to
j':? zero. We can thus conclude that (45b) used in conjunction with any relation
) containing du'® ensures that no general set du® is allowed to replace du'a.
* \"
At
l-\-.
2o
W 4.2 General Form of the Minimal Constraint Resolution
:'*H we have just seen that no components du"® other than zero are allowed in
L
:; the solution of (45a,b). Thus, since du" is a zero vector, one can use (46b)
vy
LA with du’’=0 and write
ol 8
-0
o QBan =0
-"’-.'
\ﬁﬁ These zero components can be freely added to (45a), which, when combined with
S5
‘N (45b), gives rise to the system
¢ "‘\
ir at du'® + g%dw. = du! 47a
e Ba Qgdwy = dug . (47a)
b Qau® -0 . (47b)
r T
[
I Equations (47a,b) represent the standard formulation of normal equations with
- ; (absolute) constraints in adjustment calculus, where the new notatijon dwn
%ﬁf: correspands to the Lagrange multipliers. These multipliers are thus given a
:fj: clearcut geometrical interpretation illustrating why they must be zero in a
-:?1' rank-deficient adjustment with minimal constraints.
J
#gv. In working with matrix notations from this point on., we transcribe the
i.' N

« %
.

system (47a,b) as

K

N
S

a*' QTW du’ du*'
Q o J aw*| | o ' (48)

An analytical inversion of the regular (symmetric) matrix in (48) necessitates

'l..bx S
B Py
S IO B &

the following matrix identities transcribecd from thelir tensor counterparts:
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%
=_£j The matrix relations presented above yield
. du'] ) a' A| [du¥*’
N qu _{AT o] [o } ' (49)
o "
;ﬁg That the matrix in (49) is the inverse of the matrix in (48) is demonstrated
¢§’ upon forming their product in either order and obtaining I. This constitutes an
. {' | easy proof, in retrospect, that the matrix in (48) is regular. Equation (49)
3;;: results in
;:Zi du' - a'du*' | dw* = 0 , (50a,b)
Rl )
where (50a) is the second equality in (41a), and (50b) corresponds to the
';E' identity E?duazo implied by Table 1.
;:E According to the adjustment theory, the variance-covariance matrix of the
fil parametric solution is the leading submatrix in (49). This can be regarded as
iti an independent confirmation that the necessary assoclated metric tensor a'aB
'::f indeed corresponds to the variance-covariance matrix sought by the adjustment.
f:: Further agreement with the theory is evidenced by the results (50a,b)
“ themselves, as well as by the zero diagonal submatrix in (49). One notices that
:;i: {49) furnishes a' without proceeding through an inversion of the positive-
':i? definite matrix a* of dimensions (uxu) as was the case in Chapter 3. However,
:;§3 the current procedure requires an inversion of the matrix in {(48), whose
t'h' dimensions are [(u+u"})x(u+u”)], and which is not positive-definite. With regard
vtg: to dx', g', g*, and, eventually, dx' and é', equations (43a), (43b) without the
:{ middle equality, and {(44), as well as the text that followed, apply perfectly
E :&' well also in the present situation. Similar to the closing statement in
\f Chapter 3, the numerical outcome for du' and a' depends on the explicit form of
.Si Q yet to be considered.
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5. ANALYTICAL FORMULATION

5.1 System of Orthonormal Vector Components

A complete description of a general object In parametric-space components,
contravariant and covariant, is related to the components of all the orthonormal
vectors ¢, j, ... , t, ... Since Qa' ja' ... can be determined from the
known tensor aéa. it follows that ta' ... , or an equivalent set of u"xu
components, must be chosen in some manner. The remaining components can then be
found from

e“es+j°‘18+...+c“t T (51a)

or, equivalently, from the {dentities

g %=1, ¢ =0, ... (51b)

As its analytical form suggests, the tensor 6: is closely linked to the
components of ta' ... Accordingly, a satisfactory description of this tensor

can be made only after an analysis of Interrelationships among the parametric-

space components of ¢, j, ... , t,

A collection of the above parametric-space components expressed in a given
coordinate system {ua} is called "system of orthonormal vector components”, or
simply "system”. Any such system must fulfill (51a,b). If (ua} changes, the
system also changes (i.e., some or all of the covariant and contravariant
components of £, j, ... , t, ... change), but the formulas (51a,b) must again be
satisfied. In this study, one such system wili be considered initial, and
others will be considered its variants. However, the underlying (ua} and its

variants are of no interest here.

The analysis is facilitated if the vector components are grouped in
matrices in analogy to (13b,c). This does not detract from the geometrical
nature of the present development, and does not constitute a mixed algebraic-
geometrical approach. It {s merely a convention, where the geometrical quality
of the pertinent matrices is kept in focus through a matrix equivalent of

{(51a,b). The components of ¢, j, ... , t, ... are grouped as follows:

*x : a Q .
tx = {le i, o1 Lo ety oo 1. (52a.b)

™ - ([t ). ], T = ((t% ... ] . (52¢.d)
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where [!a]. etc., represent column vectors. The matrices L* and L have the
dimensions (uxu'), while T* and T have the dimensions (uxu”). The grouping seen
in (52a) already appeared as (13c). From their construction, it is clear that
all four matrices above have the full column rank, which ts u' for L* and L, and

u" for T* and T.

The term "system” describing the collection of vector components can be
used interchangeably in reference to the four matrices above, which assemble and ?
arrange these components in a prescribed order. In view of (5la.b). any such

system must fulfill the following criteria:

est vt - (53)

L’TL =1, L*TT =0, T‘TL =0, T'TT = 1 . (54a.b,c.d)

Equation (53) and the set (54a-d) are equivalent, expressing the conditions CD=1I
and DC=1, respectively, where the regular matrices C and D are formed as C={L T]

and D=[L* T‘]T. In either case, we have
(LT = (e Tyt (55)

In analogy to a previous statement, one system fulfilling (53) can be considered
initial, and others can be considered its variants. Each of the latter must
again satisfy the condition (53) or, equivalently, (54a-d). All possible
variants of an initial systems (including the latter ftself) are said to

constitute a family of systems.

Of the four matrices L*, L, T*, and T forming a system, the matrix L* is
considered to be known since it can be obtained, for example, by the Choleski
algorithm for positive semi-definite matrices. This algorithm is applied below

to the matrix of normal equations, a*', which can be transcribed from Table 1 as

att - Lot (56)

Without any loss of generality, the (u'xu') leading submatrix of a*', denoted
Nll’ can be assumed positive-definite. In practice, this is true either a
priori, or can be achieved upon reordering the parameters. The other

T

- e 3 -
submatrices of a are, clockwise, N12' sz, and N21' where N21 le.
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Consistent with the partition of a*', the matrices L*, L, T*, and T are
partitioned into two submatrices each. The first submatrix contains u' rows and
is attributed a prime, while the second submatrix contains the remaining u" rows

and is attributed a double prime. The partitioned matrices are presented as

i—L"‘({ L' T*' T
L* o= , L = . T = . T =
(L* L" T*" T™

Due to the above stipulation for Nll' the submatrix L*' must be regular. Since

T
- [ Er[ %
N11 L*'L

it follows that L"T can be determined by the familiar Choleski algorithm for
positive definite matrices, which assigns zeco values to u'(u'-1)/2 arbitrary
elements and groups them below the main diagonal. The submatrix L*'T is thus
upper -triangular and L*' is lower-triangular. From the submatrix N of a¥*',

12
one can determine L*" through

T -1
- *1
L (L*') le

The gubmatrix sz of a*' does not lead to any new relations; but utilizing the
1

above two equations, we confirm that N22=N21N11N12 as it should.

Clearly, the "Choleski choice" for arbitrary elements of L*' is neither a
theoretical nor a practical necessity. In fact, there exists an infinite number
of other acceptable choices, and they will be discussed in principle later. But
for the time being, L*' and thus the resulting matrix L* represent fixed

entities in our system. [t follows from the above that
T %
L* = [I R] L¥ | (57)
whee

Iy (58)

T, -1 T
= (L*' £l L
R (L ) L Nll 12

The matrix R of dimensions (u'xu") is known from a*', and is fixed throughout.

So far, little has been said with regard to the matrices L, T*, and T,
except that they must conform to (53) or (54a-d). The matrix L Is erspecially

important because it serves in forming a', transcribed from Table 1 as

N
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a' = LL (59)
and in forming du', similarly transcribed as
du' - LY . (60)

where y is a column vector of u' elements, containing the constants a, b,

The values in a' and du' depend on a particular choice of I from the family of
systems, but the constants a, b, ... are tensor invariants, expressed from
Table 1 as

a = %du' | b = j%du’ ,
a ¢4

In matrix notations, the unique vector y is thus given by

y = LTdus = LTaTg*ax . (61)

Accordingly, equation (60) can also be written in the form
T ' '
du' = LL du*' = a'du*' , (60')
which appeared already in (41a) and (50a).

The resolution of a system can proceed along different avenues. For
example, If the uxu" elements of the matrix T* were given and fixed, both L and
T would be determined with the final validity by (55). This illustrates the
fact that in addition to the fixed matrix L*, the determination of a system
requires the knowledge., or choice, of uxu” independent elements. We shall
proceed by dividing uxu" elements subject to choice into two separate groups of
u"xu" and u'xu" elements, respectively. Since only the second group will play a
role in the determination of L and thus of a' and du' from (59) and (60), the

analysis based on the properties of a' and/or du' will be greatly facilitated.
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o 5.2 Family of Systems

In order to describe a family of systems, we shall choose one member of the
family as initial and then consider its variants as has been suggested in the
preceding section. However, simultaneous variations will apply only to the
matrices I and T*. Whereas the matrix L* is considered fixed from the
beginning. the matrix T can be fixed in one "loop” of a nested approach leading
to a sub-family of systems. This process can be imagined repeated with all
allowable matrices T, eventually describing the entire family of systems
consisting of the fixed matrix L¥* and of the matrix families of T, L, and T*.
The family of L will be shown independent of the variations in T, which will
enable us to accomplish the analysis dealing with du' and a' without the nesting
process. The matrix T is seen below to become fixed as soon as u"xu" of Its
elements grouped in T" are chosen and held fixed. These elements comprise, in
fact, the first group of elements subject to choice alluded to at the close of

Section 5.1.

To determine a general matrix T, we use (54b) with partitioned L* and T,
where the former has been presented explicitly in (57). This yields T'=-RT",
and thus

T - [-RT )71 . (62)

The submatrix T" must be regular due to the full column rank of T, but otherwise
can be arbitrary. Its elements, and thus also the entire matrix T. are now

considered fixed.

The symbols L and T* henceforth refer to the respective families of

matrices, while their initial choices are underlined. We thus have

ry)

N
S L - L+ oL, (63)
o

g T* = T* + AT* , (64)

L -

LB

g! where AL, and AT* symbolize the variants of the initial choices. The

v:; complete family of T* can be described only after all allowable submatrices T"
Et in {(62) have been accounted for, whereas the family of 1. is independent of such
_2 variations. This will become apparent upon considering the basic conditions
o (54a d), which must bhe fulfilled by the initial system as well as any of its
l"

7 variants.

n

%

e 38

®

F?

e

ARSI A A

S U J T I B

P I ] . P A e e e e T M e . . . P
PR 4 N AP L S S L ] Pt e S > -
{a S PRI, S, S, o, S, S T A v, i T AL SR




)
1
L]

.
C
.

-
[ R R

SENETGYg
(LRI

-

Sy RN

sl B B Ah Aul Al A h Ak o h ah A4 o aoa a0 a0 oy Maie e 4 Aee Ae Aen o aan 4 |

Particularly simple and useful choices for L and T* can be made in terms of

the fixed matrices L* and T, respectively, as follows:

L-trxre) (85)

™ - (')t (66)
It is readily confirmed that with these initial matrices the conditions (54a d)
are satisfjed. A valid initial system has thus been established. As will be
explained, this system can also be called canonical due to the advantage offered

by the form of L and T* above.

We next proceed to determine the family of systems by applying the
conditions (54a,c.,d): the condition (54b) is fulfilled by (62) with any regular
submatrix T" and need not be mentioned again. We shall formulate these
conditions with (63) and (64) for L and T*, utilizing the fact that they are
already fulfilled with L and T*. Prom (54a,c,d) we obtain, respectively,

L*TaL = 0 , (67a)
T*TaL + AT*TL + AT*TAL = 0 , (67b)
ar*TT - 0 . (67¢)

The matrices AL and AT* are partitioned in the same fashion as their
counterpacts L and T* presented past equation (56). Upon considering (57),

equation (67a) gives

AL - [-RT I]TAL" = T(T“)_IAL" , (68)

where the last formulation follows from (62). On the other hand, (67c) results
in AT*zL*(L*')—]AT*’, where the partitioned form of L* from (57) as well as
the equality T'=-RT” from (62) have been taken into account. Since (67b) leads

to AT*'=—L*'AL"T(T“T)_1. we obtain

aT* = —p*aL (e Ty L (69)

From (68), including the last formulation where T(T")il is fixed throughout, we

observe that Al depends only on the u'xu" elements of AL", which constitute
the second group of elements subject to choice as mentioned at the close of
Section 5.1. It thus follows from (85) and (68) that L varies only with the

completely arbitrary submatrix AL", and is independent of T". By contrast, T*
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varies with both AL" and T". This is evidenced by (66) with (62) showing the

dependence of T* on T", and by (69) showing the dependence of AT* on T" as

well as on AL"

We notice that (67a) alone leads to other useful identities. For example,

due to the decomposition A=FL‘T in (13a), equation (67a) implies that

AAL = 0 . (70)

The latter part of Section 2.4 indicates that a relation similar to (13a) can be
written in conjunction with the functional space, in which case A and F are
attributed the symbol “. But since L‘T remains unchanged, (67a) also yields

AAL = 0 . (70")
The identity (70) enables us to confirm, via the matrix family of L, the
uniqueness of y previously demonstrated via geometry. In particular, if we
substitute L from (63) into the formula for y in (61), equation (70) shows that

the term containing AL is zero, so that

y - LTdu* = LTaTg*dx . (71)
Thus, no matter which member of the family L is used in the computation, y is

unique and is expressed with advantage through L.

The usefulness of the initial system adopted in this study can best be
illustrated by means of the additiopal identities below. Due to L*TT=O and the
definition of L and T*, it follows that

LTT =0 , I‘TL‘ =0 . (72a,b)
These equations are valid with any T", but strictly with L and T* (i.e..
AL™ 0). Furthermore, in consulting (68) and (69), we deduce that

tTan o, *Tar - 0, (73a.b)
which are seen to hold true independent of AL" and T". The property (73a)
will greatly facilitate the analysis of a family of expressions such as LTL,
reducing it to the tnitial product LTL plus the family of ALTAL. The
vanishing of cross products such as seen above is a trademark of canonical
systems in various mathematical problems. In this sense, the special initial

system used in the present analysis is canonical.
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Next, we develop an explicit form for the famiflies of L and T*, similar to

the expressions (57) and (62) for L* and T. We begin with L. whose formation in

(65) entails an {nversion of two pogitive definite matrices of dimensions

).

and the second being L‘TL*

(u'xu’ the first being N needed in the computation of R and subsequently 1*,

11

the latter can be replaced by an inversion

")

However,

of another positive definite matrix whose dimensions are (u”"xu Since in

practice u”"<u', this avenue holds an economical advantage. We now formulate [

from (65) in conjunction with (57):

L = [I R]T s RRT) ](L"T)'l (74)

).

we first weite the identity

where the positive definite matrix 1+RRT has the dimensions (u'xu’ To develop

an equivalent but more useful expression,

rT - (1 + RTR)’IRT(I , RRT) (75a)

Upon premultiplying (75a) by R, adding I to both sides, and postmultiplying the

new equation by (I*RRT)<l one obtains (75b) below. And upon postmultiplying

(75a) by (I*RRT)‘I one obtains (75c¢). The two generated identities read

T, -1 -1.T

(1 » RR) ' =1 - R(L + RTR) 'RT, (75b)
RT (1 » RR1)Y = (1 « R'R)!RT (75¢)
We now introduce the notation H for the following matrix expression, needed
in reformulating L as well as T*:

He (RT 1171+ RTR) ! (76)
where the positive-definite matrix I+RTR has the dimensions (u"xu") as
stipulated. With the fdentities (75b.,c), the matrix L from (74} becomes

L ir o)t e Ty ey (77)

The family of matrices AL has been presented in (68) and necd not be repeated.

then follows from (63) as

The new explicit formulation of the family of L

T, 1

T yax Tty b

0] T

Lo ([ « HRY ( RT 117aLe (78)

where only AL" is variable. We reiterate that the u'xu” elements of this

submatrix are completely arbitrary,
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With regard to T*, equations (62) and (66) yield

T* - H(T"r) ! . (79)

The fawmily ot matrices AT* has been presented in (69). The new explicit

formulation of the family of T* then follows from (64) as

T* - (H L‘AL”T)(T”T) ! ' (80)

featuring not only AL" but also T" as variable. We reiterate that the u'xu”
elements of the latter are arbitrary, subject only to the restriction that T"

must be regular.

Equation (80) illustrates how the nested approach can be used in theory to
des ribe the family of T*. In a natural sequence, one first chooses a regular
matrix T" and holds it fixed while varying AL" over its range. The second and
subsequent steps differ from the above only in a changed T", until the latter
has covered its entire range. However, to select a4 unique system of the family.
one only needs to choose one submatrix T" and one submatrix aL", and use them
in (62) giving T in terms of T", in (78) giving L in terms of AL", and in (80)

giving T* in terms of both T" and AL".

In considering that the goals of the present analysis are intimately linked
to the characteristics of du' and a', it is expedient to concentrate on a sub
family of systems corresponding to a desirable sub-family of L. The hierarchy
in the treatment of elements subject to choice can then be altered accordingly,
based on a selected submatrix AL" rather than T". This submatrix yields a
unigque matrix L from (78), while the matrix T from (62) and the matrix T* from
(80) are non unique, depending on T" which is now variable. Clearly, each pair
of T and T* must use the same T". At Ihis stage not only L, hut also du' and a'
remain unique, unaffected by the variability in the elements of T". But
regardless of the hierarchy in the varlable elements, for every one choice of
4L and T, the conditions (54a-d) are satisfied and the four matrices [.*, L.
T*. and T contain a valid set of parametric-space components of the orthonormal

vectors €. j. ... ., t,
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5.3 Familles of Adjustment Quantities

As has been indicated in the latter part of Section 5§ 1, the matrix family
ot L plays an essential role fn the determination of the adjustment quantitics
a' and du’ The description of L via the inftfal choice L and its variants /L
teads to the description of these quantities along similar lines. A subsequent
analysis is preatly facilitated by the canonical property of the initial choice.
However, the adjustment quantities such as dx' and g' are {ndependent of the
parametric space components, which have been eliminated by tensor contractions.
As geomel!rical considerations have already indicated, these quantities are
unigue and must therefore be obtainable with any choice of L. This will be
confirmed by showing that the terms containing Al vanish, similar to the

discussion concerned with y in the preceding section.

The family of a' is described by (59) together with (63) in a

straightforward fashion as

a - aeoanalt epact o oal’ (81)

where

a LLT : (82)

Fquation (81) cannot be simplified because in general LALT¢0. However, the
trace of the latter is equal to the trace of LTAL, which is zero by virtue of
the canonical inittal system as evidenced by (73a). In terms of traces, we thus

have

Tr(a'y - Tr{a') ¢ Tr(ALALT) . (83)

T
The first term on the right hand slde can also be written as Tr(L L}, which is
Tr((L‘Tl‘} ‘l_ and the second term can also be written as Tr(ALTAL),

The family of du' ts described by (60) together with (63) as
thy” doa’ - Ly (R3)
whe e

du' Ly . (A5)

The most convenient form of the column vector y has been presented in (71).

Equation (RB5) can thus be written as
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du' = LL du*' = a'du®' . (85')

which corresponds to the canonical member of (680'). Finally, in describing the

family of du'Tdu'. we again take advantage of (73a) and obtain

du'Tdu' - du'Tdu' + (aLy) ' (aLy) . (86)

We now turn to the adjustment quantitles independent uf the parametric-
space components and confirm their uniqueness. In particular, using (70)

together with (84) we deduce that

dx' = Adu' = Adu' . (87)

Similarly, (70) in conjunction with (81) yields

g' - Aa'AT - Aa'AT | (88)

Thus, no matter which members of the families of du' and a' are used in the
computation, dx' and g' are unique; they are expressed with advantage through
the canonical members du' and a', respectively. We can write relations similar
to (87) and (88) in conjunction with the functional space, in which case A, dx',

-~

and g' are attributed the symbol The uniqueness of parametric functions and

their variance-covariance matrix is then confirmed via (70').

5.4 Minimum-Trace and Minimum- Norm Criteria

We first examine the conditions resulling in a minimum trace of the
variance -covariance matrix of the parameters, f.e., in Tr(a')=minimum. The
groundwork for this task has been laid in the preceding section, where {83)
expresses the family of Tr(a') in terms of the fixed part Tr(a') and the
vartable part Tr(ALALT). Since the latter equals the sum of squares of all
the elements In AL, the necessary and sufficient condition for (83) to achieve

A4 minimum is
AL o= 0 (89)

Accordingly, the family of a' in (81) reduces to a' given by (82), and the
family of du' in (84) reduces to du' given by (85) or (85'). We recapitulate
thiy outcome by stating that the minimum-trace criterion leads to the resolution

of a' and du' in the form
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a’ - ELT . (90a)
du' = Ly = a'du*' , (90b)

where y is given by (71) and a convenient explicit form of L is presented in

(77) together with (76).

The norm of the parametric solution du' is defined by the square root of
the product du'Tdu’. We now address the conditions leading to a minimum norm of
du', L.e., to du'Tdu':nininun. The groundwork for this task has also been laid
in Section 5.3, where (86) expresses the family of du'Tdu' in terms of the fixed
part gg'ng' and the variable part (ALy)T(ALy). Since the latter is equal
to the sum of squares of all the elements in the vector ALy, the necessary and

sufficient condition for (86) to achieve a minimum is
ALy = 0 . (91)

Clearly, aAlL-0 alone would bring about this minimum. However, such a condition
is sufficient but not necessary. It would become also necessary if (86) should
be fulfilled with any possible y and thus also with any possible observational
vector dx. But this is not our case, where only one vector dx is part of the

adjustment model, and we search for an optimal solution within this model.
In considering AL from (68), we conclude that (91) is satisfied only if
AL"y = 0 . (91")

We now partition AL” into its first column and into the remaining u' -1 columns
forming the submatrix ALé. In analogy to this, the (unique) column vector y

Is partitioned into {ts first element a and into the remaining u'-1 elements

b, ... forming the vector v, It 1s assumed that a#0, otherwise a different
partitfon would take place. This is always possible unless y 0, which would be
a trivial case where du*' -0 and du'-0 regardless of I and AL, With the above

partitions, (91') ylelds
ALY = AL é . 9
[ [2[ (l/d)y2 1] (92}
where the matrix ALé is completely arbitrary.

With (91) satisfied, It is clear from (84) that the resoiation of du' is
unique. equal to du' as in (90b) However. a4’ is not unique. although it is

partially restricted by (92). where only the matrix ALé aof dimensions
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u"x(u'-1) is arbitrary, not the matrix AL" of dimensions u"xu' as in the
general case. In view of (68) and (92), the partially restricted family of AL

reads

T

AL = [-R IJTAL5[~(1/a)y2 1} . (93)

The outcome for a' and du' is recapitulated as
a' = LL , (94a)
du' = Ly = a'du¥*' , (94b)

whece the family of L is written as L+AL in (63), except that the family of
Al is now given by (93). With this restriction in mind, we can rewrite the

general formulas for a' and Tr(a') from (81) and (83) as they stand.

Since the partially restricted family of AL in (93) depends on the data
through the column vector y, the members of the family of a' in (94a,b) could be
called "data-induced inverses” of a*'. Even though such inverses are non-
unique, they give rise to the unique canonical solution du' whose norm is a
minimum. However, unless AL=0 characterizing the canonical system itself, it
is apparent from (83) that the trace of the elements in each matrix of the

family of a' is larger than Tr(a').

In principle, the minimum-norm criterion produces a unique solution and a
non unique variance-covariance matrix associated with {t. From the adjustment
standpoint, such a situation is unacceptable. 1In a different approach
independent of data, the minimum-trace criterion results in the unique canonical
solution du' and the unique canonical variance-covariance matrix a' associated
with it. The column vector du' has the minimum norm and the matrix a' has the
minimum trace. These characteristics, coupled with the relative simplicity and
computational efficiency of the canonical expressions, make the minimum-trace

criterion a preferred tool in the resolution of rank-deficient models.
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6. CONNECTIONS AMONG THE FORMULATIONS

6.1 Minimal-Constraint Matrix

Chapters 3 and 4 have resolved the geometrical setup along general lines,
and have transcribed the main results in matrix notations to facilitate their
: comparison with standard adjustment formulas. The tensor 62, which played
an important role in that development, has been transcribed as Q, known in
adjustment calculus as the minimal-constraint matrix. The geometrical
development has resulted in a non-unique solution du’' and a non-unique
variance-covariance matrix a'. These quantities become unique if Q is given
explicitly In practice, Q is sought in a form that leads to desired features
of the resolution. It is well known, for example, that if AQT“O. the minimal -
constraint formulation leads to the smallest possible trace of a'. We shall

confirm this and other properties using the outcome of the preceding chapter.

Various resolution criteria, such as those involving the trace of a' or the
norm of du', are linked to the components Qa, Ja. ... and thus to an implicit
parametric-space coordinate system. These criteria cannot be represented
graphically (in terms of tensor invariants}, nor expressed in tensor equations,
because the geometrical configuration as well as the pertinent tensor equations
are independent of any coordinates. One is therefore compelled to analyze
Individual tensor components as we have done In Chapter 5. This step would be
unnecessary in the full-rank adjustment, where u"-0 and no components of the

orthonormal vectors are arbitrary.

Chapter 5 has shown that Q is not needed if the adjustment quantities du' 1
and a' are expressed directly through the parametric-space components of
¢, j. ... , without an intermediary such as the extension surface. The latter 1
has entered the development, in one capacity or another, in both Chapters 3 :
and 4. Although this surface is implicated also in Chapter 5 through the

parametric-space components of t, ... , its role could have ended upon obtaining

an expression for the family of L needed to describe the families of du' and a'
Such a limited role would have merely confirmed that AL in (68). based

entirely on L*TLfI in (54a), is valid. However, we have developed also the

r

family of T*. in order to relate the analytical formulation in Chapter 5 to the
e . . )
et formulations in Chapters 3 and 4 which utilize the matrix Q.
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Table 1 suggests that a general matrix 6 can be presented as

Q = Tral ) (95)

where
-0 (96)

and where T* appears in (80). With the latter, we describe the family of Q by

Q= Term) TeuT - oanreeTy (95')
Chapter 5 has shown that the only variable elements affecting du' and a' are
those grouped in AL". We can thus qualify the statement at the close of
Chapter 3 by stating that the variability in du' and a' caused by the

variability in Q is due to AL" but not to T" or T.

From the structure of Q in (95') it is clear that a given minimal-
constraint matrix of dimensions (u"xu) can be premultiplied by any regular
matrix and the result is again a valid minimal-constraint matrix. Such a change
in Q can always be thought of as absorbed by the arbitrary matrices T or T".

The latter possibility illustrates another fmportant fact, namely that T can
vary without affecting Q because T" can always compensate for such variations.
I[n relation to Chapter 3, this property helps us to verify that k‘sk_1 can
indecd be an arbitrary positive-definite matrix used as a welght matrix in

conjunction with a given Q. Upon writing
k = TTF (97)

as suggested by Table 1, one can compute TT, for example, by the Choleski
algorithm for positive-definite matrices. Although changes in k* entail changes
in T, the matrix 6 can be kept intact by virtue of the arbitrariness in T".

In tracing such variations further. we realize that they propagate into T* and
thereby into a*". (To see this we use k“==k-1 in 40d and confirm that a’”=T*T*T.

where T* is affected by T" in the manner of 80.) It should be emphasized that

the variations described in this paragraph leave du' and a' intact.

In assessing the approaches of Chapters 3-5, we first recall that du' and

"a
\-

@

’
R

a' depend on the arbitrary matrix AL" either through L or through 6. The
tormer case, presented in Chapter 5, is straightforward. The latter case,

presented in Chapters 3 and 4, is more complex due to the introduction of Q

L
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containing the addil ional arbitrary matrices T and T". However, these two
matrices have no bearing on du' and a'. From the standpoint of this study, they
serve mainly to illustrate that the standard adjustment formulations using Q

are quite cumbersome when compared to the analytical formulation. [If we compare
the sizes of the matrices to be inverted, an economical edge of the analytical
formulation hecomes apparent as well. Chapter 3 contains one such matrix of

"

dimensions (uxu), where u=u'+u Chapter 4 also contains one matrix to be
inverted, but its dimensions are [(u+u")x(u+u")]. Howcver, Chapter 5 only needs

te invert one matrix of dimensions (u'xu') and one matrix of dimensions (u"xu"}).

Perhaps the greatest asset of the analytical formulation is the simplicity
of its theory. In keeping the geometrical qualities of the basic matrices in
focus, one can readily generate families of results fulfilling specific criteria
and classify them according to the u”xu' arbitrary elements grouped in the
matrix AL". Equivalent results could be obtained using Q , but this would
entail differentiation of complex matrix expressions. Such an approach, besides
being more tedious, would be algebraic in nature. It has been avoided, and the
outcome of Chapter 5 has been ecxtended to benefit also the formulations in
Chapters 3 and 4. This strategy is rooted in the fact that a given matrix AL"
leads to the same results regardless of the methodology, i.e., regardless of

whether it is used in forming L in (78) or Q in (95').

These results are now briefly summarized. A completely arbitrary AL"
characterizes a general resolution represented by the (unrestricted) families of
du' and a'. The partially restricted AL" from (92) characterizes the unigue
minimum norm solution du' and a partially restricted family of a'. And AL":0

characterizes the unique minimum-norm solution «du' and the unique minimum-trace

variance covariance matrix a'. As ls suggested by (95'), in the last case the

S5

matrix Q simplifies to the form denoted Q and called canonical, where
- q =Tty HT (98)
s
!! The matrices T and T used In forming Q in all three categories are regular,
".
v "at oiherwise can be arbitrary. In terms of Chapter 3, this implies that the
::: variance covariance matrix k-TTT associated with the minimal constraints can
:2 be arbitrary provided it (s positive definite.
i
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Finally., we make a connection between the form of Q and the rank of the
matrix A augmented by Q. In a first step, using any member of the family of

Q presented in (95) as

Q = TeT , (99)

we show that

A
rank [_} = u , (100)
Q

which is (39b) developed in Chapter 2 through geometrical considerations.

Since (99) represents a straightforward geometrical relationship, this step
reduces to a confirmation of consistency in geometrical derivations. Recalling
from (13a) that A=FL*T. we write

AR

The first matrix on the right-hand side has the full column rank u, and the
second matrix is regular. Upon postmultiplying (101) by [L T) and recalling the
identity (55), the product [AT QT]T[L T] is seen to have the full column rank

u, hence (100) is necessarily true.

As an important special case of (99), we consider the canonical system
synonymous with the minimum trace property. Thus, 6 is restricted to the

special case seen in the explicit form in (98), written in analogy to (99) as

Q = fItT ) (99")
{The term "case” is used here loosely, reflecting the fact that AL"=0; we know
that T and T" can be arbitrary, but these matrices hold little interest at
this stage.) Upon using (13a) for A in conjunction with the identity (72b), it
follows from (99') that

AQT =0, (100')

which constitutes a special case of (100).

In including also a ¢ werse demonstration, we further show that (100)
leads to (99). In this ‘38 the symbol G is used in place of Q. Since it

must hold that rank(G)- the matrix G can be decomposed into the product

50
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where G1 is regular and 62 has the full row rank u”". The matrix G1 can be

considered arbitrary, but if G is fixed then any one choice of G1 settles Gz.
Recalling again (13a) for A, we can write a relation similar to (101}, except

that T is replaced by G1 and T*T is replaced by G2' Since the matrix on the

- left-hand side of this new equation has the full column rank u by definition,

the matrix [L* GE]T on the right-hand side must be regular. But then 62 can

repres:-nt an admissible matrix T‘T (which, in turn, settles L and T). Since we

can further identify G, with the arbitrary regular matrix T. we can write

1
G=TT“T for any matrix G satisfying the initial rank stipulation. Accordingly,
any admissible matrix G has the structure of Q in (99)., and the demonstration

is terminated.

As a special case in the converse demonstration, we wish to proceed from
(100') to (99') using the same notations and basic steps. We thus begin with
AGT=O, representing a special case of the initial rank stipulation. Next, we

replace A by FL*T according to (13a). Since the rank of F is u' it follows that
L"TGT 0, hence I*TG: 0, which is similarly a special case showing that the
matrix [L* 62} is regular. But from (72b) it follows that the admissible T*
represented by 62 must be I*T. so that we can write G=TI*T completing the

demonstration. We have thus established that in the approaches utilizing the

T

matrix Q, the minimum trace criterion is satisfied only if AQT0. This
occurs only for Q=Q. whose explicit form is given by (98). In practice,
such a matrix is usually easy to obtain from the structure of the adjustment

model .
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6.2 Confirmation of Consistency

In this section, we shall verify that the results for du' and a' are the
samc in all three formulations described by Chapters 3-5. For its simplicity,
the standard of comparison is adopted from Section 5.1 in the form of equations

(60), (59), and (61), respectively:

du' - Ly a' = LLT (102a.b)

where the fixed column vector is

y = LTdu*' . (102c)

Equations (102a,b) are general, not subject to any criteria such as those
analyzed in the latter part of Chapter 5. They are also the most

straightforward expressions offered by the geometrical setup for du' and a'.

The general results for du' and a' derived in Chapter 3 appear in (41a,b),

rewritten here as

[

du' - adu*’' , a' = aa*’'a . (103a,b)

The matcix a Is given by (42), which reads

a = (a*) 1. (103c)

The matrix a* is formed as in (40b-d), namely

a* - a*' + a*" ,  a* - Alg*A ., a*" = Q' k*Q . (103d,e.f)

All of (103a-f) follow from the geometrical setup developed in the context of

the universal space.

Finally., the gencral results for du’ and a' derived in Chapter 4 can be
read from (49), already confirming {102a.b). However, this confirmation is
achieved through the matrix Q, which we shall not consider as a whole, but,
rather, in terms of the basic matrices T and 7*. (The same applies for Q in

the last paragraph.) Thus, we begin with equation (48), rewritten in the form

‘du'i ar Q “du*
dw‘J Q 0 .0

p . )

r T et Tv-1
‘ (104)

L
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After the indicated inversion, the matrix a' will occupy the location of a¥*'.
Equation (104) is a consequence of the geometrical setup developed in terms of

an extension-surface vector restricted to zero.

Since all of (102a)-(104) reflect the same geometrical setup, the results
for du' and a' must be identical. Although this is not readily apparent, we
should be able to confirm it using known geometrical relations among the
orthonormal vectors €, j, ... , t, ... The parametric-space components of these
vectors have been grouped in the matrices L*, L, T*, and T forming a general
system. Accordingly, the known geometrical relations just mentioned are
expressed by (53), or (54a-d), or (55), which are all equivalent. However, the
presence of Q requires the use of two additional matrices, denoted T and
T*. which contain the extension surface components of t, ... The former has

been presented in (96), while the latter is similarly defined as

T* - (ft,l ... 1. (105)

We now list the geometrical identities which will be used in relating the

results of Chapters 3 and 4 to those of Chapter 5. From Table 1 we read

T

a*' = L*L*1 , a*" = T*T* (106a,b)

Q= TT* . (107)

Equations (106a,b) also follow from (103e,f) upon using the decomposition of A
and Q (the latter equation further uses k"’-—k'1 with k given in 97). Although
all three identities have alreadv been encountered, they are listed here for an
easy reference. The definitions (96) and (105) imply the identity T‘Tf=l.

and thus

™ =7 . {108}

J; A.‘l l‘

*Ci Finally, due to the orthogonality of any vectors in the extension surface with
-

[, ] respect to any vectors in the model surface, we have as a special case

[

N.:::': TTd”,“ =0 . (109)

W,

i

o This fdentity also follows from (40e}, (13a). and (54b).
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In turning to the outcome of Chapter 3 as

T

a* {(L* T*]{L* T*} . a = [L

where (110a) follows from (103d) and (1066a.b),

on the right -hand side as follows:

SR VR
{{0 - - J } LO i J :
L T -1 0
fLe T+ o}’l o T T }r

i ) ] = ) .
! |

o T T L0 0 T

where (112a) can be verified via (54a-d), and (

which can be read directly from Table 1. This

the

" ."\"\"n"-.'-."«.“-'-." T e e

consistency among the results of Chapters 8

presented in (103a-f), we write

T

TI(L T} . (110a,b)

while (110b) follows from (103c)

and (55). Both identities can also be deduced from Table 1. If we substitute
(110b) in (103a) and use (102c) and (109), we confirm the result (102a). And if
we substitute (106a) with (110b) in (103b), we confirm (102b) as well.
The confirmation of the outcome from Chapter 4 is lengthier and more
complex. First, we form the matrix to be inverted in (104) as
Tax QU e 1 ojf1® o T*}T
| b= - ,,55 ; Lo (111)
Q 0 0 T Tjio T T |
which can be verified upon using {106a) and (107). Next, we invert the matrices

(112a)

(112b}

112b) can be verified via (53).

If we multiply together the iight-hand sides of (112a,b) in the same order,

we obtain the inverse of the matrix on the left hand side of (111). The
substitution of the latter in (104) yields

Ty \LLT ‘]1 (du*’

& « . ) L (113)

deJ T T 0 J Lo
In considering (102c¢), the first equation implied by (113) confirms (102a).
Moreover, with (109) taken into account, the second equation yields dw*:0. In
agreement with the statement following (104), the location of a' in (113) is
oveupied by LLT which confirms also (102b). Upon further scrutiny, (113) is
sern to bhe identical to (49) due to the identity

A TT*T (114)

concludes the task of verifying
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7. DISCUSSION

7.1 Completeness of Adjustment Families

The method suggested in Section 5.1 for the computation of L*' from Nl] has
been the Choleski algorithm for positive-definite matrices. Subsequently, the
matrix L* in (57) has been assumed fixed during the development leading to the
description of adjustment families In S=ction 5.3. We shall now show that any
method used in the computation of L*' results in the same adjustment families of
du' and a', which are thus complete regardless of the numerical values in L*'.

The only admissibility condition for L*' is

T
L = I
L*'L Nl] , (115)

which has also been at the root of the Choleski choice in Section 5.1. Since
Nll is given and thus fixed, the matrix R defined in (58) is fixed throughout,
i.e.. independent of L*'. The geometrical relations leading to (61) have
revealed that the column vector y is fixed as well. Furthermore, in consulting
(68), we realize that although Al is variable as a function of AL", it is

fixed with respect to L¥*',

On the other hand, I. and thus also L depend on L*', as is clear from (74)
or (77) and from (78). However, if we form a' by (82) in conjunction with (74),

we obtain

1

T N;;(I rRR N1 Ry

a’ - LLT = {1 RIT(1r + RRD)7?

where (115) has been taken into account. Moreover, in rewriting (85') as

du’ = a'du*'

where du*' is given and thus fixed, we conclude that both du' and a' are fixed.
Accordingly. (83) and (86) indicate that the trace of a' and the norm of du' are
independent of L*', although the same cannot be said of the families of a' and
du’ themselves  But if one can show that the family of a' is independent of

L*', the same will be true for the family of du' by virtue of (60').

The family of a' is given by (81), where the first two terms on the right
hand side are independent of L*'. Since the third and the fourth terms are
transposes of each other, all we need to show is that LALT is independent of

L* We hepgin by assuming the exigtence of two distinct families of I LeAL.

55
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The first corresponds to the Choleski choice and 1s called “f”, and the second
corresponds to a different admissible choice and is called "j". Based on (115),

it must hold that

T T
RN Y -~ FEEE 3
L1 Li LJ Lj . (116a)

where L;' is the submatrix [L*' as evaluated in the family i, etc. Next we
postulate the following admissible relationship between the unrestricted )
submatrices AL; and AL}:

-1
“ o Goprws .
AL1 ALJ.(Lj ) L1 . {116b)

Since both L?' and L;' are regular, any AL" can be written as

ALY = AL” (L*') ‘i
J P J

where the first submatrix exists (in fact, it can be computed by 116b).

As a matter of interest. we torm ALALT tor the family j, where 4L is
given by (68) with AL" attributed the subscript j.  In taking advantage of
(116b) and then of (116a), we arrive at ALALT for the family i. This
outcome 1s obtained with any possible AL} in conjunction with a given L}'.
and, upon repeating the procedure. in conjunction with any admissible L*'.
This indicates that the family i for ALALT is indeed complete. Since the
derivation could be retraced with "i" and "j" interchanged., it follows that any
admissible L*' leads to the same (compiete) family of ALALT‘ Essentially
the same conclusion has been reached earlier, when AL has been shown to be

independent of L*'.

The crucial step in the current demonstration proceeds in analogy to the
previous paragtaph, but 1s simpler in that it does not necessitate the identity
(116a). We form LALT fo. the family j. where both the submatrix 1.*' in (74)
or (77) and the submatrix ALY in (68) are attrituited the subscript j.  Keeping

I intact while taking advantage of {(116b), we arrive at EAI.1 for the family i.

4
An argument similar to the one above leads to the conclusion that the family i

for [_,ALT is complete, and that the same family can he obtained with any

admissible L*' . This concludes the proof that the families of du’ and a' are ‘
independent of L*', {. e | that the same (complete) families are obtained with

any LY fulfilling (115) One can thins adopt the Choleski choice and consider

¥ and thereby 1L* fixed throughou'  as has been anticipated in Section 5.1,
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7.2 Unigueness of the Canonical Property

The property central to the analysis of adjustment quantities in Chapter 5§

has been embodied by (73a) holding identically with any admissibie AL, namely
T
L AL - 0 . (117)

As we have seen in Section 5.2, any matrix L can be expressed by L=L+AL, where
the first member is defined in (65) and the second member appears in (68).
Supposc now that L is not the only matrix fulfilling (117) and denote another

such matrix as L., where
L = L + AL . (118)

Since [, is a matrix from the family of L, AL must be expressible by (68),

i.e., it must have the form

aL - RT IJTA;"

[f it should hold that QTAL:O for any admissible AL, in considering

(118) together with (117) we would have
aTor -0,
where AL has the form (68). This relation can thus be written explicitly as
" T "
aL” (I » R R)AL” = 0 , (119)

where the submatrix AL” of dimensions (u"xu') is completely arbitrary, and
the submatrix AL" of the same dimensions is to be determined. In the usual
situation., where u’'>u”, AL" can be thought of as partitioned into a (u"xu")
submatrix and the remaining submatrix. Since the former can be assumed

nonsingular, and since the matrix (IoRTR) is positive definite, it follows from

(119) that we must have ALT 0. hence

AL 0 . (120}

For the sake of completeness, we also consider the unlikely case u'<u”
Since (119) must be satisfied with any AL”, the net effect is the same as if

it had to hold with all such submatrices simultaneously, i.e., as If the columns

of "7 were angmented by the columns of all the other submatrices AL”.  One
can then always choose u” indepecdent columns From thelr totality, and form a
A
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regular matrix.  In so doing, one arrives at the last step in the preceding
paragraph, including the result (120). We can thus conclude that the matrix L
fulfilling (117) is unique, defined by (65) and developed into (74) and further
into (77). Indeed, this is the matrix we would obtain if we started from the

condition (117).

7.3 <(anonical System dand the Pseudoinverse

+ . .
The unique pseudoinverse M of the matrix M fulfills four conditions,

catled "¢, "g”, "r", and "m". The condition "¢" states that the matrix MM* is
symmetric, "g” states that MM'MVM, "r' states that M*MM'=M+. and "m" states that
MM is symmetric. In the present context, the role of M is played by L*T. In

considering L‘TL:I from (54a), we observe that the condition "¢ for L as a

r . .
potential pseudoinverse of ¥ {s satisfied. The consequence of this special

form of “¢" is an automatic fulfillmeant of the conditions "g" and

r" as well.
On the other hand, LL*T is symmetric only if L=L. In particular, with L from

{65) the symmetry is confirmed and thus

Vooaxty

L - LTy (121)

T

There can be no other matrix L satisfying the condition "m" because the

pseudoinverse is unique.
In considering the identities (56) and (59), i.e.,
a¥' - L*L*T , a’ - LLT .
with the aid of (54a) we deduce that

a*'a'a*’ a*’ a'a*’'a’ a'

These equations follow also from the geometrical setup, and can be obtained upon

consulting Table 1. [f a' should be the pseudoinverse of a*', the matrix LL"‘T
would have to be symmetric. in which case both conditions "€¢” and "m" would be
satisfied simultaneously. But this can occur only if [=L, as we gather from the
last gstep that has led to (121). Accordingly, we conclude that

at - LL' - (a*) (122)
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As a matter of interest, we now turn our attention to the matrices T*, T,
Q, and A. In repeating the demonstration which has resulted in (121), but
with T* replacing L.* and (“1d) replacing (54a), wec observe that T and T"T are
the pseudoinverses of each other only (f TT'T is symmetric, which, in turn,

occurs only if T*=T*. Paralleling (121), we thus have

) ot D (123)
where the first equality follows from (66). The matrix Q from (95) and the
matrix A from (114) yield QA-1, hereby satisfying the first three criteria
for A to be the pseudoinverse of Q. However, the condition "m" can be
satisfied only if TT*T is symmetric, which leads to T*:=1* as above and thus to
the canonical system. The last assertion is due to the fact that AT*:-0 in
{69) entails AL"-0. (The canonical property does not depend on T", but the

latter must be the same in both T* and T.) 1Iia this system onec has

qQ - Tl A - el (124a,b)

where T* and T are linked by (123). With the aid of (124a,b) and (108). we

finally write

A-0l@ht-qo . (125)

In terms of Chapter 4, we conclude that if the canonical system is implied in
{48) and (49), not only is the minimum-trace criterion satisfied, but the four

corresponding matrices in these equations are the pseudoinverses of each other.
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8. SUMMARY AND CONCLUSIONS

The subject of this study is the parametric least-squares ([..S.) method,
where the adjustment model {s either linear or has been linearized beforehand.

In adjustment notations, the L.S. setup is represented by !

where L, V, and X are the vectors of n linearized observations, n residuals, and ;
n pdarametric corrections to XO fan initial set of parameters). respectively. |
The vector L ois formed as Lb LO, where Lb contains the actual observations and
L contains the values of the observables consistent with X°. An additional
veclor representing n adjusted lineari{zed observations is symbolized by L',

where
L' = AX

The Jetter A denotes the design matrix of dimensions (nxu), which either has the
rauil column rank or is rank-deficient. The former kind has been treated in
{Rlaha, 1984], while the latter is dealt with herein. However, the basic L.S.
setup and its geometrical Interpretation are the same in both the full-rank and

the rank deficient adjustment models. The L.S. criterion in either model reads
T . -1
V' PV = minimum , p -z
where P and £ are respectively the weight matrix and the variance -covariance
matrix of observations, both of which are positive definite. The quantities I

(and thus P}, A, and L. are known a priori.

Most of the theory concerned with the development of a geometrical setup
tsomorphic in every respect ta the pavametric .S, adjustment can be found in
Chapter 2. In this task. the tensor structure has proven invaluable. 1t has
brought about simple correspondences between adjustment quantities and
peometrical objects, as can be gathered upon transcribing the above three

vquations in tensor notations:

r r ¢ W

dx A dn v dx
{r

. T r ,

ix A dn
a

S r rt A
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Accordingly, dxr corresponds to the (linearized) observations, dx'r to the
adjusted (linearized) observations, dx"" to the error estimatc., (i.e., minus the
residuals), du'® to the parametric corrections, AT to the design matrix, Esp

to the weight matrix of observations, and grt to the variance-covariance matrix
of observations. Just as their adjustment counterparts, the tensors grt (and

thus gsr)' A;, and dx' are known a priori.

The geometrical objects whose components are dxr, dx'r, dx"r. and du’a are
referred to as vectors dx, dx', d«", and du', respectively. Although AZ
cannot itself be represented graphically by a single object, it can be expressed
via components of orthonormal vectors. In its tensorial formulation, the L.S.
criterion stipulates that the leangth of the vector dx" must be a minimum. Since
the vector dx' is restricted to an implied model surface, it follows that dx" is
orthogonal to this surface. Crucial to the geometrical development of both the
full-rank and the rank deficient adjustment models is the property whereby A;
transforms the components of vectors lying in the model surface from one
coordinate system to another. Accordingly, the above relation for dx©

indicates that the vector denoted du' is identical to dx'.

The mere transcription of the basic L.S. setup in tensor notations suggests
an alternative to the standard algebraic treatment of the parametric adjustment.
The approach undertaken herein uses geometry with tensor structure to express
all the adjustment quantities In terms of orthonormal vectors. Through this
tsomorphism, the observational vector dx lying in an n-dimensional observational
gpace is projected onto a u'-dimensional model surface as dx'=du'. The
observational space is spanned by n crthonormal vectors ¢, j, ... , v, ... .
while the model surface embedded in this space is spanned by u' orthonormal

vectors ¢, j. ... In the rank deficient problems, where the rank of the design

DR
B

matrix 1s u' and the rank deficit ls u”=u u', the model surface is also embedded

Pl i

in a u dimensional parametric space spanned by u orthonormal vectors €, j, ... ,

P\."’a.‘. Sl

t., ... and is thus an intersection of the observational and the parametric
spaces.  In the full-rank problems, where u=u', the parametric space and the
:} mode]l surface coincide In both cases the contravariant components dx'r.

:f v 1.2, ...n, and the contravariant components du‘a, a=1,2,...,u, are related
: through the design tensor A;. The latter is shown to be expressible by the

nbservational space contravariant components and the parametric- space covariant

components of the orthonormal vectors ¢, j, . gpanning the model surface.
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The isomorphic geometrical setup reveals that all the adjustment matrices,
i.e., the design matrix, the variance covariance matrices (of observations,
adjusted observations, residuals, and parameters). and the corresponding weight
matrices, can be expressed as a product of two constituent matrices each. This

outcome is further qualified as follows:

(a) All constituent matrices are written in terms of orthonormal vectors, the

elementary geometrical objects;

{b} These vectors are the same in efther matrix of the constituent pair, only

the type of their components may differ; and

¢} The set €, j, ... spaaning the model surface is common to all constituent
matrices except those pertaining to the residuals (and, in the rank-

deficient context, also to the minimal constraints If the latter are used).

he geometrical development yields simple expressions for the (singular)
weight matrices of adjusted observations and residuals, not derived in standard
adjustment literature. In the case of rank -deficient adjustment, it confirms
the familiar outcome that the unique variance-covariance matrix of parameters
which has the minimum trace is the pseudoinverse of the (singular) matrix of
normal equations. At the same time, the minimum-trace criterion results in the
vnrgue parametric solution which has the min‘mum norm. By comparison, the
minimum norm criterion alone leads to a new family of "data-induced” inverses,
edach of which produces the same unigue solution as above, not merely the same
minimum norm. However, since each such inverse constitutes a variance-
covariance matrix of parameters, and since a unique parametric solution with a
non nnique variance covariance matrix has little practical value, the minimum-

trace approach is preferred to the minimum norm approach.

From the theoretical standpoint, both the minimum-trace and the minimum-
norm resolutions are merely special cases of the general resolution, where the
solution vector as well as Its varfance -covariance matrix are non unique. The
veneral resolution has been analyzed in three distinct formulations presented in
thapters 3 5, all of which have been confirmed in Chapter 6 to give identical
results. This onteome is summarized below using the familiar matrix symbolism.

However. the transcription of tensor relatians into matrix relations {s intended

[y
o Y

ta preserve the letter symbols given to rensor quantities, rather than to change
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them ‘o standard adjastment symbois such as those seen in the beginning
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paragraph. The tensor indices are simply dropped, and, in the case of a purely
covariant tensor, the original letter symbol is attributed "*". Thus, for
example, the tensor components dxr are grouped in the adjustment (column) vector
dx. Although the symbol dx has been used earller to Identify a geometrical
object, its role is clearly discernible from the context. As another example,
the tensor components du'a are grouped in the adjustment vector du', while the

8 r . .
components du where du‘=Angrdx . are grouped in the adjustment vector

8’ 8
du*', where du*'=A g*dx. The latter is sometimes referred to as the right hand
side of normal equations. This transcription I1llustrates the close

correspondence between tensor contractions and matrix multiplications.

The universal space formulation of Chapter 3 generates the augmented
observation equations presented in (38) by joining the minimal constraint matrix
Q to the design matrix A:

Tax T T A
= - _ idu’
1

-

Vol

' 0

The augmented matrix [AT QT]T must have the full column rank as stipulated by
(39b). The complete welght matrix is written as diag.(g*¥.k*), where g* is the
original weight matrix of observations and k* is an arbitrary positive definite
weight matrix associated with the minimal constraints. The matrix of normal
equations in this formulation is a*,6 which is positive-definite in contrast to

the original positive semi definite matrix a*'. The general solution du' and

its variance covariance matrix a' are expressed from (41a,b) as

du’ - adu*' = a'du¥*' ,
a’ aa*¥'a
-]
where a-(a¥%) . The solutfon du' adu*’ is the standard outcome of a full rank

mode] represented here by the augmented observation equations. However, the
variance covarjance matrix o in such a model would be a, which should be modified

as indircated 1n order to yield the desired positive semi definite matrix a’

The minimal constraint formulation of Chapter 4 also uses the matrix Q,
but proceeds through augmented normal equations as in the standard adjustment

with (absolute) constraints.  These normal equations are depicted in (48), and

are resolved in the form

T S R R SO RN
PR Y L T T WY Y N T T P R

T
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After the inversion, the variance-covariance matrix a' occupies the location of
4*¥'. As has been shown in {50a,b), the complete solution consists of du'=a'du*'
confirming the previous result, and of dw*=0. The vector dw* corresponds to the
Laprange multipliers in adjustment calculus. The geometrical interpretation in

Chapter 4 illustrates why they must be zero.

The analytical formulation of Chapter S circumvents the use of minimal
constraints in any capacity, and thus also the use of Q. Instead, it proceeds
to form the basic matrices L*, L, T*, and T, containing the parametric-space
components of the orthonormal vectors ¢, j, ... , t, ... The geometrical
interpretation of these matrices reveals that only L* and L, containing the
components of 2, j, ... , participate in the resolution of du' and a'. On the
other hand. T* and T, containing the components of t, ... , serve in the
analysis of Q in view of Chapters 3 and 4. The simplest expressions for du'

and a' follow from the geometrical setup as

du’ a'du*' ,
a' = LLT

A complete description of L is offered by (78). namely

T T T -1 ) T T ..

L - {[l 0] - HR }(L*'") « [-R 1] AL
with the exception of AlL”, all the matrices on the right-hand side can be
computed from the matrix of normal equations a*', and are considered fixed. In

T
PN oy S arti “ >
this task, a is partitioned clockwise into N]]. le. sz. and le, where the
Teading submatrix N11 of dimensions (u'xu') can always be assumed positive
definite, whether a prior! or upon reorderting the parameters. The matrices
(L*’T) ! and R of dimensions {(u'xu') and (u'xu”), respectively, can then be
obtained via the Choleski algorithm as explained In Section 5.1, i.e., via
T 1

L*'L* Nll and R Nille' Finally., the matrix H of dimensions (uxu”) 1s
T 1

constructed in (76) as H:=[-R I]T(I+R]R)

The above expressions for du', a', and L reveal that the properties of the
resolution depend entirely on the u'xu' elements grouped in AL". If this

matrix 1s completely arbitrary, L has the most general form resulting in the

64
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general resolution of du' and a'. Clearly, a non-unique solution du' and a non

unique variance covariance matrix a' hold mainly theoretical interest. If
ALY is partially restricted by (91'), the solution du' is unique and has the

minimum norm. The restriction (91') can be written explicitly as

ALy Y1 0] » RE jdu* - 0,

or can be further developed into (92), etc., all of which are data dependent due
to du*' . However, a' is still non unfque since it is only partially restricted
with respect to its general counterpart. Finally, If AL" 0, both du’ and a’

'

are unique. In this case du' is the minimum-norm solution identical to the one

above, and a’ is {ts variance covariance matrix of the smallest possible trace.
The three cases just described have been derived in conjunction with no
criterion, with the minimum norm criterion, and with the minimum trace
critecion, respectively. As has been suggested earlier, the minimum-trace
criterion is superior to the minimum norm criterion, and, by the same token, to
any other criteria. Even if some of them produced unique du' and a', the norm
of du’ would not be a minimum, or the trace of a' would not be a minimum, or
both.  The analytical formulation has revealed another advantage of the minimum-

trace criterion over any other, namely that this criterton results in the

simplest expressions possible, represented by AL" 0.

The analysis of Chapter 5 can be extended to the approaches of Chapters 3
and 4, developed with the aid of the matrix Q. This goal is addressed in

Chapter 6, where (957) presents Q in the general form
1 T
Q - T(T") (H ALTL®)

The matrices H and ALY have been described above, the matrix L* of dimensions
{axa' ) is given by (57) as L*:[1 R]TL"‘ and the matrices T and T" of

dimensions (u”<u”) are both arbltrary, subject only to the restriction that they
must be regular.  The geometricai construction of Q ensures that the rank
condition (39h) s satisfied. The properties of the resolution are determined
by “L7 in the manner of the preceding paragraph.  Thus, for example, the

minlmum trace criterion corresponds to AL” 0. This stipoulation is equivalent

to AQT 0, representing a special case of the rank condition (39b). Apain, the
matrix Q with L7 0 is the simplest of its kind. It is usually easy to

obtaln in practice from the structure of the adjustment model, without the need

foi an explicit formula,
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The foregoing has illustrated the theoretical benefits offered by the
analytical formulation of Chapter 5. However, this formulation holds also an
ecconomical edge over the other two. In particular, the analytical approach
calls for an inversion of one matrix of dimensions (u'xu') in the computation of
(L"T) ! and R, and one matrix of dimensions {(u"xu") in the computation of H.
Since both matrices to be inverted are positive -definite, the Choleski algorithm
is well suited for this task. Although the matrix L“T in itsclf could be
regarded as non unique, Section 7.1 shows that such a variability is
tnconsequential because the adjustment results for du' and a' contain only the
inverse of the product L"L*‘T, which is unique and known. By comparison, the
use of augmented observation equations in Chapter 3 requires an inversion of the

posttive definite matrix a* of dimensions (uxu), where u=u'+u Finally, the
use ot augmented normal equations in Chapter 4 requires an inversion of a matrix
whose dimensions are [(u+u”)x{u+ru’)]}. Another drawback of this standard

procedure is that the matrix to be inverted is not positive definite.

Although du' and a' are in general non unique, the vector dx' containing
the adjusted (linearized) observations and the variance-covariance matrix g' of

these quantities are unique, expressed by
dx”’ Adu'
‘ T
% Aa'A

These results, derived by geometrical means in Chapter 2, are applicable to each
of the three formulations of Chapters 3 5. In terms of Chapter 3, the same

: . - . o . , T ; .
posttive semi definite matrix g’ is obtained also as g AaA . The positive

semi definite weight matrix associated with dx' follows from the weight

propagation law established in Chapter 2 as
A Al A

With repard to adjusted (lineatized) fonctions of parameters, the pattern
presented above an conjunction with dx' and g' applies in every respect, except
that dx’ . ¢, and A are attributed the symbol “.  This outcome represents, in
fact . the vartance covartance propagation law known from adjustment calculus.

i The weagrht matrix ﬁ" for such functijons could not be compated in analogy to

p* ' because ¥ is unknown. ) The new weight propagation law applied to adjustes
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sﬁg observations could be useful if the latter, or their subset, should participate

.:. in some capacity in another adjustment. The natural and nearly effortless

. derivation of this law highlights potential benefits of an isomorphic approach,

\E: even though the disciplines being related may inftifally seem quite disparate.

N

‘:E:::: Several other topics related to geometry with tensor structure have also

“* been addressed in this study. For example, Section 7.3 confirms that the matrix

J%J A' in the minimum trace approach is the pseudoinverse of a*'. Upon substituting

f..‘ AL 0 in L listed earlier, this pseudoinverse is expressed by

= (r” g o)t o wkTIN T o)+ i)

s Such an algorithm could be useful not only for its clearcut geometrical

;E interpretation, but also for its computational efficiency. As has been already

:.'r' indicated, the pseudoinverse of a positive semi -definite matrix of dimeasions

N [(u'su”)~{u'+u")} entails here only one inversion of a positive definite matrix

‘;_t of dimensions (u'xu') and one inversion of a positive definite matrix of

.:’ dimensions (u”"xu”). Although two positive definite matrices of dimensions

.::.-'__ {(u"xu') could be inverted instead, the above procedure is more advantageous when

b u'>u”, which is by far the most prevalent situation in actual rank deficient

-t adjustments .

.:_':i A part of the theory developed in this study is illustrated with the aid of

::::, a simple example in Appendix 1. This example treats the general adjustment

. resolution, the minimum norm resolution, and the minimum trace resolution in

:'_‘ each ol the three formulations presented in Chapters 3 5. Appendix 2 introduces

-':.__ a commutative diagram corresponding to Table 1 in Chapter 2., which offers a

::,‘- visual representation of the operations that can be performed and the relations

that can be obtained via the tensor version of adjustment quantities. Although

_: the computational mertts of the Cholesk! algorithm are well documented, a

comprehensive geometrical interpretatfon of this algorithm has been lacking.  To

A * f11l this void Appendix 3 interprets the Choleski algorithm for the positive
detinmite as well as the positive semi definite matrices in terms of orthonornal
vector components Finally, Appendix 4 shows how the tensor structure, whioh
has been the cornerstone of the present study, could also be useful in
applications unrelated to adjustment calculus, such as the transfarmation of
multiple inteprals.
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APPENDIX 1

NUMERICAL EXAMPLE

To illustrate the formulas and methods summarized in the last chapter, we
present a simple numerical example, where the dimensions are n=3, u=3, u'=2, and
u”:1. Thus, the rank of the (3x3) matrix A is two and its rank deficit is one.
We begin by listing the quantities which are given, namely A (the design
matrix), g* (the weight matrix of observations), and dx (the vector of
linearized observations), followed by a few gquantities computed from them and
considered fixed. Subsequently, we shall proceed with the resolution of du’
(the parametric corrections) and a' (their variance-covariance matrix) according
to the three formulations analyzed in this study. The analytical formulation,
which is the most useful theoretically and computationally, will be treated
tirst. The universal -space formulation giving rise to augmented observation
equations will be treated second. And the minimal -constraint formulation giving
rise to augmented normal equations, which is the least advantageous of the

three. will be treated last.

The given quantities are

2 o 1. 6
' !

A - ]4 3 1, g* = diag. (1/3, 1/6, 1/2) , dx = |0
o 1 1 2

The normal equations are formed by means of a*' and du*', computed as

fa 2 o [4]
av Algra 2 2 1. du*' - ATg*dx fl’.

|

o 1 1 11

. T . , L o
the 121 leading submatrix of a*' is N“tl,"'l.“ ., which is positive definite.

Further fixed quantities are computed as

T Ty 17 T 1 1 P
e : L (L* ) - (1.2}, |
LO IJ 0 2,
. -
, : 1] R
- N, (1v2) | K11 2)
- . 2, 2
K 1 2J L "J
-
; X
4
BN
e
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1"2 0 -1 -1 2
Lx = !1 1. H = (2/9)] 21| . HRT = (1/9) 2 -4
LO 1 2 2 4

The Chaleski algorithm has given L*'l and (L*'T)—l as upper-triangular.

Al.1 Analytical Formulation

The fundamental matrix L is given by
Lo- ([T o]T ' HRT}(L"T)“ 11 AL"

U'pon substituting the pertinent fixed quantities, this becomes

4 -2 ~1
L = (1/911 4! + (1/2)} 2|AL"

|1 sJ 2

General resolution. We now choose AL" at random as

ALY - 2001 2) . (A1.1)
which leads to

T3 20!

Lo(1°9) 17 40
17 31
4

The remaining adjustment quantities of fnterest then follow as

{ 569 1021 -841

a’ - LL (1/81)! 1021 1889 1529 . (A1.2a)
{ 841 1529 1250
' 16
‘ du' Al du® (179)) 740 (Al.2b)
e 85
L -
NS T
i.i Tr(a') - 412/9 . du' du'  1313/9
:.4;:~
Eﬂ£ £ 9
o4
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o
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| |
dx' - Adu' = 3 . g' = Aa‘AT - 1 5 li (Al.3a.b)
! l
1
]J l 1 1 IJ

The adjusted observations dx' and their variance covariance matrix g' are
independent of AL", and thus of the resolution characteristics, as is verified

below.

Minimum norm resolution. In this case AL" must fulfill the following

partial restriction linked to the data through du*':

s (%) Yep1 o) ¢ RHT jdu*' = 0

wWith the aid of the fixed quantities, this becomes
AL" [ 2 —llT = 0
One such partially restiicted cholce is

ALY - (4/9) (1 2] . (A1.1)

resulting in

S

Loo(1/9)s 12,
Ls 3]

e remaining adjustment quantities are computed as

Tao 62 8] Mol
( . o
A’ (1/81),-62 169 61 du' - (1/9)] 2] (Al.5a,b)
\
L 8 61 34J L 7]
Tr(a ) - 3 . dn'ldu' 17. 9 minimum
This type of a', referred to earller as a data induced inverse of a*' results
in the mintmum norm solutiron duy' . The values of dx' and g are confirmed to be 1

the same a3 those {n (Al . 3a.b), and need not be listed again

Minitmum tirace resolution This case entails

ALY 0, {Al.6)

and thus

2 'T‘
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4 -2
L = (1/9)1 4
s
Accordingly,
20 -4 14 (107'
a' (1/81) -4 17 19| . du' = (1/9)] 2 (A1 7a.b)
LM 19 26 [7J
. . T, , o
Tr(a') = 7/9 minimum du' du 17/9 minimum
The vector du’ in (A1.7b) represents the minimum norm solution, the same as its
counterpart in {A1.5b), while the matrix a' in (Al.7a) has the minimum trace
The values of dx' and g' are agaln identical to those in (Al 3a.b)

Minimal constraint matrix. This matrix, denoted here as Q, is not neecded
fn the analytical formulation, but is presented for the sake of the other two
tormulations Although a matrix Q acceptable for the general resolution could
easily be found, and although such a matrix for the minimum trace resolution is
often supplicd in practice, the situation with regard to the minimum norm
resolutfon is more complex in that Q does not depend on A alone, but can be
formed aanly after dx and thereby du®*' have been evaluated The general formula
giving Q reads

o1 T “
8] T(T) (H AL l“T)
The regular bhut otherwise arbitrary matrices T and T” have no effect on du’
and o’ Here they are chosen as
T 1 T 29
Fn asing the same ‘L7 as presented in (A1.1,4.6), we obtain the following
matrices § tar the three kinds of resolutions:
goeneral Q |17 7 204 (AR
minimum norm ] . 5 4 6 | (A )
b minimum trace Q {1 2 2] (Al )
o
o
s
r.\-A.
I\‘.
v,
o '
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Universal -Space Formulation

General resolution. In augmenting th

constraint matrix Q from (A1.8). we create

T .
] is three as

T T
equations IAr Q whose rank

AS matrix associated with Q,
T-1. but k*

in T" .}

the weight we
could be

The a

with the above choice

virtue of the arbitrariness

conjunction with the complete welght matri

e design matrix A by the minimal-
an augmented matrix of observation
stipulated by the rank condition.
choose k*-1. (This is consistent
changed without affecting Q by

ugmented observation equations in

x diag. (g* k*) yield

293 117 340{
a* 117 51 141
L 340 141 401
r b
39710 T1269 58729
{
A {a*}) {1 5643), 71269 131879 106799
]_ 58729 106799 87362
lu using this mateix a in the expressions
a’ aa*’ a du’ adu*' a' du*’ {Al.11a,b)
wee obtain the results fdentical to (Al 2a,b) in the analytical formulation.
Similarly, the results for dx' and g' are identical to those listed in
(Al 3a.b) In agreement with the relation
[t A'AAT Aa’,\! (A1.12)
the numectoal outeome (AT 3b) is confirmed also as ¢! Am\r

Mintmum_norm resolution Here we augment A by Q from (Al1.9). which again
o im_noprm resofutlon
o . . . .
",J'._~ satasfties the rank condition U'pon using the same k* and thus the same compiete
.;\ webyht mateax diag (g* . k*) . 1t follows that
‘ 29 22 80 11 69 10
AR \ * 2¢ | 2h A (1-81) &4 173 65
o 30 47 10 6 i
w « i
n',‘
:' Pl cateame tor a4 and do computed by (AL 11a b)) s fdentical ta (Al 5a.b) 1n i
2 ‘
‘ The analytioal tormaiatjoq Similarly  dx’ and g cincbudang the farst egualaty
-:‘f too N o e confarmed to o be adentfoal to thedr counterparts o in (Al a0
- ‘
o~ :
'A. !
@ /
- l
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Minimum trace resolu

tion. In augmenting A by Q from (A1.10), we have

T .
AQ -0 as a special case o

5 0
a* 0 6

|

2 3

The outcome tor a' and du
dx' and g' is similarly i
in each kind of resoclutio

those found in the analyt

Al

General resolution.

given by (A1.8) is comput
4 2
}hu'} ! 2 2
} P ‘? ’ \
dw | 1 4] 1
L17 -7

At this stage, the (3x3)
to be a' from (Al.2a). I

[

duJ
(1/9)
(1w"

which confarms du’ from |
pant it ies A oand g can

resalut van . and . theretog

Miniaum norm cesolut jon In auing Q from (AL 93, we obtain
1. .
! . ! } 10 he 3 R 1
‘Y . ' , U FRTRE 18 i
S
dw?® 0 ! 1 ‘ ! I 61 14 1H |
1 . ' X 9 18 18 0 a

.3 Minimal -Constraint Formulation

74

f the rank condition. The above weights then yield

21 7 2 4}
3: . a - (1/27)] 2 7 -5
sJ 4 -5 10

is now identical to (Al.7a.b); and the outcome for
dentical to (Al.3a,b). It can thus be concluded that
n, the results for du' and a' agree perfectly with

ical formulation.

The solution of augmented normal equations with Q

ed as
0 17]"l p 569 1021 841 9! [a
' {
-1 -7 1 -1021 1889 1529 18 11!
[ = (e D
1 20 1 841 1529 1250 18 1|
o
2 o |o s s s oo,

leading submatrix on the right hand side is confirmed

n carrying out the indicated multiplications, we obtain
46}

|
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Al 2b) . as well as the theoretical result dw* o The
be computed by the formulas (A1 34, b) for each type of

eoowr !l onot he men toned apain
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N - s ane r— a
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A
N
"10]
.‘n' ~- ' ;
- jdu' o2
'y y o= (179 |
M (dw® ' 7
-
.. | 0
».':‘ -0
Yy . , .
N In analogy to the preceding paragraph. a' and du’ are confirmed by (Al1.5a,b),
X
y and dw*-0 is again seen to be valid.
o~ Minimum trace resolution. Finally, in using Q from (A1.10). in which
SO . _T
"o case 1t holds that AQ =0, we compute
~ 3 3
. fto2 o 1" (41 (20 4 14 -9 41
- - H !
du’] 2 2 1 2l 11‘ 17 -19 18 1|
‘gl ‘ ‘ [ (1/81) .
e de‘J 0 1 1 2% \l\ 14 -19 26 18 1
.\.l
o L1 2 2 o) [0] Lg 18 18 0 0
S
'
A 10}
. . \
N du’ l 2
= . (1 9)
- dw* ’ 7
s._ b <4
b L OJ
e, Here dw® 0 1s again fulfilled, while a' and du' agree with (Al1.7a.b). We notice
ph
.
xj that the matrix to be inverted above. although regular, is not positive
A
:i definite In particutar, ifts leading submatrix of dimensions (3x3) is positive
v
' ) semi definite, which would cause the regular Choleski algorithm to break down
Hi‘ due to a division by zero at the level of the element (3.4).
:f: This « 'ncludes the comparisons and verifications intended to illustrate the
{fﬂ conststency amonyg the three formulations, as well as their theoretical and
economical ranking.  The fnversicns we have witnessed implicate the following
-". Moty tees (a) Two posative defanite (symmetric) matrices of dimensions (2x2)
j;: Aamt (1=1) 1n the analvtical formulation; (b) One positive definite (symmetric)
,’: matrix of dimensions (4-5) in the universal space formulation, and (<) One
N symmetors matrix of dimensions (4<4), regular but not positive definite, in the
mitamal constramnt formulation As 4 matter of interest the same adjustment
resabts (et Jisted here) have been found in the universal space and the
,: mitimal constraant formuiations with different values of T and T affecting
bt oot duaoand g Finaltly the outiome for dx and g s confirmed to be
tavartabte net only with regard to 1 and T bat aiso to I
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APPENDIX 2

COMMUTATIVE DIAGRAM

The tensors defined in Table 1, including the covariant forms of the first
two groups, have provided the necessary tensor relations utilized in this study.
All of these relations, as well as many others that can be derived with the aid
of Table 1, are summarized visually via the commutative diagram of Fig. 2. To a
certain extent, tnis diagram resembles the right-hand side of the diagram
presented in Fig., 2 of [B]. The main differences stem from the fact that the
“hoxes” representing the vector componcents dua and duB have now been subdivided

into two parts each, and that the extreme right-hand portion of the diagram

. A
encompassing the components dw  and de has been added.

Just as Table 1, the diagram of Fig. 2 shows the partition of the
underlving universal space into three surfaces combined in two spaces. The
description ot the diagram can be made in a close analogy Lo the specifications
found in [B]. In particular, the vector components (marked in boxes) symbolize |
At the same time the gpaces or surfaces in which these vectors exist. Thus, in
both the contravariant and the covariant versions, the boxes representing dx' ‘
and dx” should be imagined as completely fllling the box representing dx. A
stmilar statement can be made also with regard to the boxes representing du',
du’. and du. The second order tensors acting as linear transformation operators
are designated by arrows The heavier lines ldentify the quantities which, in

the corresponding LS. setup, are considered known a priori.

The description of the diagram's functioning could be adopted from [B}] as k
well The arrows with dots can again be used in two ways, 1.e., the dots can
oither bhe considered as an integral part of the arrow, or can be disregarvded. i
And when expressing one quantity in terms of some other(s), we again start at :
the desired box or at the tip of the desired arrow and proceed against the
tirection of the arrow(s) along a chosen (possibly even repetitive) path, noting
1h the second order tensors encountered duaring this process.  The relation is

mpleted whet o selected hox or the base of a seiected arrow is reached.

Eaquatyons 1150 ) represent cimple applications of these two rules.

‘. .ol PR Tt -VA . RS ot L L ee Lo -‘.'-;.4 . R T '.“‘._'4 Coe
P P P N S O I T N T e e s
v . ° - I W . N W . Y R T T )




N T e NN NN ™ >

L T T T P P U Ry e yrry

fhe inter surface contractions (during which one of the two vertical dashed

) . . r, ,a

lines is crossed) result again in a zero tensor, such as in Aadu =0. The

. . rs a )
four vertical arrows g =, 8ep a B, and aBa are not part of such contractions

since they are associated with the surfaces on either side of the dashed lines.
Finally, various contractions among the first- and second-order primed tensors
can again be added algebraically to their doubly primed counterparts, the result

beingr the corresponding unprimed tensor. A simple example of this kind is

) "

r
gsrdx ~g"ldx I‘fgbrdx ., where the g' and g"-arrows could be replaced by the
s sr ;
$arrows. More detaill as well as examples illustrating the above rules can be

found in {B].
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APPENDIX 3

GEOMETRICAL INTERPRETATION OF THE CHOLESKI ALGORITHM

A3.1 Full-Rank Case

In the geometrical interpretation of the full-rank adjustment, such as
described in [B], no individual components of the orthonormal vectors are known,

but certain combinations of such components are given as a part of the L.S.

. . r rs
setup. These combinations correspond to the tensors dx , g and thus gsr' and

>

AE at the point P, presented as

dx’ - aQr + bjr oLt qur o,
grs PR LN ers . PN AN N '
= + + v ,
Esr ¢ Qr ' Jsjr Ys¥r T
r r T,
A = £ 2
L L LT

Except for the index L, the above notations are the same as those utilized in
[B]. The u' dimensional model surface is endowed with the coordinate system
symbolized here by (uL), L=1,2,....,u'. This deviation from the notations in [B]
should present no difficulty.

In the full rank setup, the components of the orthonormal vectors are used
as geometrical tools in formulating tensor equations. In this role they take
part in operat.ons that leave no room for completely arbitrary components, as
contrasted to the rank-deficient setup where entire sets of such components can
be chosen arbitrarily without conflicting the a priori information. For
example, the metric tensor of the model surface, formed as aML=A;gsrA£, is
expressible through the covarian! components of the model surface orthonormal
vectors &, j. ... Such a relationship allows one to compute a family of sets of
these components, each set reconfirming the correct tensor aML corresponding to
the matrix a* of normal equations, but no set allowing any of its components to
be changed arbitrarily. The set which is the most useful for the subsequent
inversion of a* would be a natural choice in the numerical resolution of the
adjustment problem. Clearly, the inversion of a* can also proceed by purely
algebraic means, where the computation of the individual components of ¢, j,

Is bypassed.
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Although no numerical aspects were considered in [(B], it is instructive to
show how the covariant components of the model-surface orthonormal vectors could
be determined in the full-rank adjustment. This will help bring into focus the
ambiguity associated with the orthonormal vectors of the parametric space in the
rank-deficient adjustment. The pertinent tensor relation and its matrix

formulation read

a . ¢ + J

MI, ML J

M L

.*:t*T * . ; B
a L*L . L [[QM}[)M] R (A3.1a,b)

where L* is regular and a* is positive definite, both matrices having the
dimensions (u'xu'). Since a* is symmetric, the u'xu' elements of L* are
determined from the u'(u’+1)/2 independent elements of a*. Thls means that
u'(u'-1)/2 indeterminable elements of L* are chosen beforehand, with the help of
which the other u'(u'+1)/2 elements can be computed. For any such choice there
exists a matrix L* fulfilling (A3.1a). All possible choices give rise to a

family of matrices L* and, accordingly, to a family of sets & But

M jM,
once a setl is computed, no components can be changed independently of the others

without contradicting the fixed values in a*.

X T .
The greatest number of elements that can be chosen in any column of L* s
u' -1, otherwise the corresponding diagonal entry in a* would not in general be

. T .
accommodated by (A3.1a). Assuming there is one column in L* numbered i with

-1 chosen elements, we observe that no other column can have u' -1 chosen

'

EE: elements. (If, tor example, a column numbered j broke this rule, the ij th
;::: entry of a* would not in general be accommodated.) The next greatest number of
Eié chosen elements in any column is u'-2, {.e., there are two computed elements.
:5« If this column is numbered j. one computed element accommodates the jj th
:i: {diagonal) entry of a* and the other accommodates the ij-th entry. Again, only
:%: one column in L*T can have u' 2 chosen elements. The next greatest number of
ii‘ chosen elements in any column is u' 3, etc., until one of the remaining two
!! columns can only have one chosen element and the other cannot have any.
:E: In keeping with the mavimum number of chosen elements in each instance. we
TE: observe that there are u' 1, u' 2, u' 3, ... , 1, and 0 chosen elements

) encompassing gradually the u' columns of the matrix L*T. The order of these
f;: columns as well as the order of the chosen elements in their respective columns
:': Are arbitrary Bt since the sum in this "maximum” sequence equals u'(u' 1)/72,
“x -
0 |
b
Ve ae e e A ™ B T S L NN
S NI S R e e
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there cannot be fewer chosen elements in L‘T either. The above sequence thus
represents the exact number of chosen elements. [t is now convenient to adopt
the following three-pronged strategy for the formation of the matrix L*T:

1) Assign zero values to all chosen elements; 2) Arrange the columns according
to the descending number of the assigned zZeros (the first column has u'-1 of
them, the second column has u' 2, etc.): and 3) Place these zeros strictly in
the bottom portion of each column. The thus constructed matrix L"r is upper-

triangular, and (A3.1a) reflects the standard Choleski algorithm.

Accordingly, the matrix L* is lower-triangular, which means that no
component of [QM] i8 assigned zero value, the first component of [jM] is
assigned zero value, the first two covariant components of the next orthonormal
vector are assigned zero values, etc. This is how far we need to go toward the
determination of the coordinate system {uL}, L=1,2,...,u'. It is clear from the
foregoing that such a coordinate system is compatible with the known metric

tensor a .
ML

With regard to the associated metric tensor of the model surface, we have

JLM LM LM

i3 o+ ...
a - Ll L= et L (A3.2a,b)
Due to the orthonormality of the model-surface vectors ¢, j, ... , it holds:
LT -1, L- sl (A3.3a.b)

By virtue of (A3.3b), equations (A3.1a) and (A3.2a) confirm that

-1

a = (a*)

Since the matrix L*T is upper triangular, so must be L. This means that the
second through the last components of [QLJ are zeros, the third through the

last components of [jL] are zeros, etc. Consequently, L and thus also the

matrix a can be computed more efficiently than would be the case if one inverted

a* by other methods, ignoring its positive definite structure.

The foregoing development has [llustrated the geometrical meaning of the
Choleski algorithm insofar as the covariant components of the model -surface
orthonormal vectors are concerned. Although coordinates need not have been

ment ioned, linking coordinate systems to the above procedure offers further
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geometrical iasight, and can even prove beneficial in solving unrelated problems
as will be exemplified in Appendix 4. [In order to address such tasks., we make
use not only of the {mplied model surface coordinates (uL}, L-1.2,....u", but
introduce another set of model surface coordinates. The new model surface
coordinates are symbolized by {VL}. L-1,2,...,u', and are intended to describe
the model surface at and around the point P. As a crucial step, they are
stipulated to be Cartesian, belonging to the Cartesian system called "local”

The latter is defined as centered at P, with the axes directed along the model

surface orthonormal vectors ¢, j,

. . L . .
We now postulate a very special configuration of the u’  coordinate lines

, L. . .
with respect to the v coordinate lines (Cartesian axes), which we shall call

“canonical”. First, the tangent to the u1 coordinate line is postulated to

coincide with the v1 coordinate line, i.e., a straight line along ¢. This
2 -3 u' ,

means that the v, v, v4, L coordinates, i.e., the Cartesian

coordinates along directions orthogonal to this tangent, are unaffected by

. . 1
differential changes in the u1 coordinate. Second, the tangents to the u  and

2 . ) -1 2
u  coordinate lines are postulated to span the same plane as the v and v

coordinate lines, i.e., straight lines along & and j, respectively. Therefore,
the 93, 94. e Qu, coordinates, {.e., the Cartesian coordinates along

directions orthogonal to this plane, are unaffected by differential changes in
the u1 and u2 coordinates. Next, the tangents to the ul. u2, and u3 coordinate

lines are postuiated to span the same (three dimensional) hyperplane as the

1 2 3 , R -4 u’ )
v ., v , and v coordinate lines. Consequently, the v , ... v coordinates

3 .
are unaffected by differential changes in the u], u2, and u’ coordinates.

1 2
Continuing in this manner, we finally postulate that the tangents to the u , u

3 u' o1 . . ;
U, ..., u coordinate lines span the same (u' 1 dimensional) hyperplance as

1 ¢ 3 -u' -1 . -u’ .
the v, vz. Vo, ... .V coordinate lines. Thus the v coordinate

{the Cartesian coordinate along the direction orthopgonal to this hyperplane) is
. A 1 2 3 u' .
nnaffected by differential changes in the u', u, v, ... , u coordinates,

and is affected only by changes in the uu coordinate.
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In retracing the steps in the above description, we deduce that

11 : : ; '
!—av aut awlsan? avladd 0 vl o

|

! 0 awéiant  avdied® . avdaut
[dvlﬁauM] = [dv du) - ! 0 0 av"/au'3 . av>, au"

|

{

!

|

, L} t

Lo 0 0 av'/ au"

L _

(A3.4)

which is associated with the point P and reflects the canonical configuration
there. (As a matter of interest, a result of a similar form would be obtained
for the canonical configuration of the uL coordinate lines with respect to the
vL coordinate lines even if the latter were not Cartesian.) Since the only
role of the indices . and M above s to indicate the dimensionality of the rows
and columns, respectively, such indices can be left out from this and similar
expressions. Just as L*T dealt with earlier, the (u'xu') matrix in (A3.4) is
upper triangulac. In fact, fn the next step we demonstrate that these two

upper triangular matrices are identical.

The tensor transformation law applied to the model--surface orthonormal

vectors reads

) S .M - —_— -8 M, -
QM - (v /du )QS JM = (dv /3du )JS
Since ¢, j, ... are unit vectors in the directions of the local Cartesian axes,
we have
-S T < =8 T
[eg] - (271 - (100 ... ] . [Jg] = (5" = (100 ... ) .
Accordingly, it follows that
_S -
[(ey )13y} - 1 - [av /3u™T = ravsou)T

Since the matrix on the left-hand side is L*, it Is indeed proven that

[av/au]) - L*T . (A3.5)
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This result shows that by choosing the u'(u' 1}/2 indeterminable elements
in L‘T as zeros according to the Choleski algorithm, one has effectively chosen
the canonical configuration of the coordinate lines uL with respect to the local
Cartesian axes directed along the vectors ¢, j, ... If these u'(u'-1)/2
elements were chosen in any other way, the coordinate lines nL would have a
general configuration with respect to 2, J, ... Clearly, equation (A3.5)
remains valid no matter the cholce of the indeterminable elements, which only
affects the composition of L'T and with it the aspect of the implied coordinate
system {uL}, There is an infintte number of such choices compatible with the
matrix a*. RKut just as the Choleski{ choice for L‘T is simple and appealing
numerically. the corresponding canonical property relating the directions of the

I.

u mrdinate lines to the model surface orthonormal vectors is simple and

appealing geometrically.

We now present the formula (A3.1a) from a different angle, based on the
autcome (A3 .5) The tensor transformation law applied to the model surface
metric tensor reads

A (%vs/auM)(aVR/auL)ég

ML R

Since the coordinates {vL} are Cartesian, asR in matrix notations is [ (the

unit matrix), and the above tensor equation in matrix notations becomes
T, .-
a* [+~ Au) [3v/3u]

which ts (A” ' as antictpated.

Due ta (A3 3b) in conjunction with (A3.5), we can also write
Lofov a0 [au v (A3.6) !

which s agoin vpeer triangular as has been noted earlier. We can now confirm
(A3.2a) trem the tensor transformation law applied to the model surface

assnctiated meteric tenpanr:

Y i I8¢ M < RS
) (o vy (P Wb a

. ‘RS |
Agaln, sinee (o770 yepresents the local Cartestan coordinate system, a in

matrix notations v« 10 and the above tensor equation in matrix notations becomes

A Fon v ] o v
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But in considering (A3.6), this is seen to be (A3.2a}). We have thus reviewed
the Choleski algorithm, from the decomposition of a* into triangular matrices to
the inverse solution for a, and shown at every step what it entails in the
geometrical language, both in terms of the components of the model-surface

orthonormal vectors and in terms of the implied coordinate system {uL}.

A3.2 Rank-Deficient Case

Similar to the previous section, the known combinations of the orthonormal
vector components representing the rank-deficient L.S. setup are dxr, grs and
thus gsr' and A;, These notations have been used throughout the body of the
present study. As has been indicated e.g. in Section 3.1, the necessary metric
tensor aéa corresponds to a*', the known positive semi-definite matrix of
normal equations of dimensions (uxu) and rank u'. The tensor and matrix
formulations of this entity are

= 0+ ]

aéa 8 a BJa IR
T

ax' - LEL® L* - [[QB”JB] NN

where the dimensions of L* are (uxu'). At this juncture, the notations and
relations formulated in Section 5.1, especially equations (52a)-(59). can be

adopted as they stand.

The metric tensor of the parametric space, a_, , is unavailable from the

Ba

[L.S. setup. But it is instructive to express it in theory, including the

corresponding matrix relations:

asa = QBQa + jﬁja oLk tBta +

a* - [L* T*][L* LEILE (A3.7)
where T¥ [s transcribed from (52c) as T¥*- [{t I...]. We can now imagine,
alongside the implied parametrlu space ccordlnafe system {u }, a=1,2,...,u,
a local Cartesfan system (u }, a=1.2,...,u, whose axes point in the directions
of the parametric-space orthonormal vectors ¢, j, ... , t, ... In analogy to

the derivation that has led to (A3.5), we obtain

[(eg1 (3] . Ttgl .. ] - fon” /00”17 = [ousau)T
84
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and thus

[¢u ) - [L* T‘}T . (A3.8)

Although the known a*' allows us to determine L‘T by (57), T* and thus a*
are unknown Accordingly. we have only the first u' rows of [3u/du] in
(A3.8), equaling L‘Ts[L"T L'”TI_ where the submatrix L"T is upper triangular
by virtue of the Choleski chofce. In assuming that the first u' coordinates of
the system (ua). a t,2,..., u represent a set of implied model surface
coordinates, we deduce from the full-rank analysis that the first u' of the

|
a . . - . . i
u . oa t.2,.. ., u coordinate lines have a canonical configuration with respect

. T ! .
to &€, j. ... But since In general T*' #0 and T'”rrupper triangular matrix,

b4

. . T " . . , , , .
a:. where 1‘r=(T" T* r], the complete matrix of partial derivatives in (A3.8) 1s
n._-- a

N not upper triangular. Therefore, on the whole the configuration of the u

.ﬂ& coordinate lines with respect to the local Cartesian system in the rank

deficient case is not canonical.

The ahbove assertion concerning ”[“T can be elaborated as follows. From (79)
or (80} it transpires that the matrix T* corresponding to the minimum trace
T)-l

solution has the form H(T" where H I8 given by (76) and T" is arbitrary but

regular. It thus follows that
el ey T kTR IR

where R depends on the matrix of normal equations a*', and is given by (58) as

1 . T .
ou N11N12' Accordingly, T*' -0 could hold only if R=0, which, in turn. would
. require that levﬂv Since in general such a restriction does not apply, the

. i a
above conclusion regarding the non canonical configuration of the u coordinate

'

54,
Vv

lines 1s confirmed, as least insofar as the most desirable resolution of the

rank deficient model i< econcerned

The guantity of crucial importance in the rank deficient adjustment is the

a3

necessary qassoclated metric tensor a . corresponding to the variance

Lab e o o0 g% ot
N e
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covariance matrix of the adjusted parameters. We now have

‘ A e B
S

< =
ey

r e
s 5

L

- where Iois given in (62b) as -1 J[j 1 .. 1. However, I, cannot be computed
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N from L* 1in analogy to (A3.3b). due to a more complex relation expressed by
4
N (55) Since L* is known, the entire outcome hinges on the choice of the "free"
i matrix T*. Once T* is chosen under the necessary assumption that [L* T*] is
O 1
s regular, a* can be computed by (A3.7) and a car. be computed as (a*) . The
- matrices [ and T then follow as L-=aL* and T=aT*.
. The contravariant components of all the parametric space orthonormal "
SN vectors are thus seen to depend on the choice of the covariant components of
- t, Each such choice is instrumental in determining the numerical values of
~:}' the solution vector du' and its variance covariance matrix a'. Conversely, by
T
stipulating certain desirable properties for du', a', or both, one can find what
. 1t entails in terms of the covariant components of t, ... grouped in the matrix
~
-1 ’ . . . . . :
ot T*. As is recapitulated in the Summary and Conclusions, the basic resolution
e
“» .
jx: properties can be expressed through the u"xu' free elements grouped in the
\i
Lo matrix &lL7.  The values of T*, if desired, can then be found from (64) and (69)
‘kif in Section 5.2.
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APPENDIX 4

TRANSFORMATION OF MULTIPLE INTEGRALS IN ANY DIMENSIONS

In this appendix we seek to lllustrate how the canonical configuration
encountered 1n the tull rank case of Appendix 3 could be useful in problems
unrelated to the present study and. indeed, to any L.S. adjustment. For the
sake of an edasy visualization without the aid of figures or diagrams, we proceed
via a three dimensional example. However, due to the nature of the coordinate
systems involved, this example can be effortlessly extended to any dimensions,
bocan be redinood to two dimensions.  The notations adopted here are those of
the tall rank case in Appendix 3, f.e.. the local Cartesian coordinates are
symbolized by 1v‘} and the implied coordinates, now called curvilinear, are
symbolized by (uL). In the three dimensional application the indices range as
[. 1.2.3

We begin by constructing a differential parallelepiped whose edges follow
D

<

the directions of rhe ul, u ., and u3 coordinate lines at the point P described
by the curvilinear coordinates (ul.uz.ug}. First, we envision the u1 coordinate
line through ', along which the coordinates u2 and u3 are constant. Within a
short distance from P, a segment of this line Is straight. We also envision
another u’ covrdinate line, along which the coordinates (uzbduz) and u3 are
constant Due to the small difference {n the u2 coordinate, the second line is
close to the frrs5t . and within a small nelghborhood of P the two straight line
Segments are posraddel In the same fashion, we envision parallel straight line
segments ot two “2 coordinate lines, the first characterized by constant n1 and
“3 coordinates, and the second characterized by constant (ulvdu]) and u3
coordinates We are now in the presence of a differential parallelogram
associated with the vectors da and db emanating from P, da being the straight
line segment along the first u1 coordinate line and db being the straight line
segment along the first u2 coordinate line (there is no need to use additional
notations for the other two straight line segments completing the
parallelogram) Proceeding in a similar manner, we complete the differential
parattelepiped associated with the vectors da, db, and dc emanating from P.
These three vectors form the parallelepiped's edges at P and follow the

. 1 2 3
directions of the u | u | and u coordinate lines, respectively.
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In the curvilinear coordinate system (uL). the contravariant components of
the three differential vectors da, db, and dc¢ are denoted as daL. dbL, and ch.
while 1n the local Cartesian system (QL}, these components are déL=déL, d5L=dbL,
and ch er The local Cartesian system, centered at P, is defined in such a
way that the mutual configuration of the uL and the GL coordinate lines is
canonical. Consistent with an earlier description, this means that the Gl
Cartesian axis coincides with the tangent to the u1 coordinate line at P (i.e., ‘
the vz and v3 coordinates are unaffected by differential changes in the u]
coordinate), and the Gl and 92 Cartesian axes span the same plane as the
tangents tu the ul and u2 coordinate lines at this point (il.e., the coordinate

3 .
v is unaffected by differential changes in the ul and u2 coordinates) .

{f desired. the above definitjon could be readily extended to four and

, - 4 -3 .
higher dimensions by adding v, ... behind v' within the two parenthetic
statements in the preceding paragraph, and by continuing in the same manner, ‘
_ - 3 .
i ¢ . stipulating that the vl. vz, and v Cartesian axes span the same

hyperplane as the tangents to the ul. u2. and u3 coordinate lines (the
coordinates v4, .. are unaffected by differential changes in the ul. uz, and u3
coordinates) . etc. The differential parallelepiped would then be extended to
higher dimensions as well. In particular, its edges at P would be formed by the

differential vectors da. db, dc. dd, ... following the directions of the ul. u2.

3 B . .
o.ou ., .. cooerdinate lines.

In the general Cartesian coordinates (VL}, i.e., not only in the local
"artesian coordinates {vL}, the projection of da on the first Cartesian axis is
ddl'dd). the projection of db on the second Cartesian axis is db2=db2. and the
projection of dc on the third Cartesian axis is dc3:dc3, However, the advantage
of the locdal Cactesian system becomes apparent upon the realization that the
absolute value of the product da]d62 equals the surface of the parallelogram
associated with the vectors da and db, and the absolute value of the product
daldbzt‘h::3 equals the volume (dV) of the parallelepiped under consideration,
associated with the vectors da, db, and dc. In continuing the same process

without the need for abstract generalizations other than the straightforward

extension of “volume” to higher dimensions (it equals the "area” in a given

o byperplane times the "height" orthogonal to it), one obtains the formula giving

the volume of a parallelepiped iIn higher dimensions as the absolute value of

ddldbzdc‘ldd‘1
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Ll
D) .
o
‘:2: Since the tensor transformation law specifies that
LSS
- . - - - -L -1, M
N da” - (avkauM)aa™ db” - (av/auM)anM dct « (av/auMydacM
}:: and since, by construction, the contravariant components of da, db, and dc¢ in
Pl
25 curvilinear coordinates are
..\I
r\: 3 T
(da"] - (ad! o )T, @) = 0 a® o7, fac"] = (0 0 au?)
<
- it follows that
ah : . . _ 3 3,3 3
- da' < (avl/autyad? | db? - (av?/au’) du® ac® = (av3/au°) du
‘-‘-
Accordingly, the volure element at P becomes
: "
1 -2 - - - -3 3
av = [da'dbide] = 1(avi/aul) (3v8/au?) (35 /au) | duldulau® | (Ad.1)
{% where duL are considered positive. A completely analogous formula is readily
) avajilable in higher dimensions (or in two dimensions).
E Upon consulting equation (A3.4) reflecting the present canonical
l configuration, we transcribe (A4.1) as
. - 1,2,3
dV - IDet[dv/du}|du du"du” , (Ad.2a)
iiﬁ where "Det” stands for "dete minant”. Furthermore, due to
o
g B} R
'{3 a* - [av/au]T[av/8u]
)
N listed prior to (A3.6). we have
= | a2
O Det (a*) - (Det[3dv/3u]}" ,
) where a* I{s the matrix notation for the metric tensor at P  characterizing the
2 curvilinear coordinate system (UL}. This allows (A4.2a) to be written also i~
/
7 (pet (a*)]' Zdu'duau® . (Ai
o
~"
i Just as (A4.1). the formulas (A4.2a.,b) are readily adaptable to any d‘m»
-
ko The foregoing development leads directly to ihe formula for t1ans - a
::f: of multiple integrals from rectangular to curvilinear coordinat,.
i g.-..
::ﬁ Cartesian coordinates for a given region in space arc now denote
- the curvilinear coordinates are still symbolized by (UL> vl
3
- R
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,;- (A4.2b) is valid as it stands because it involves exclusively the curvilinear
"*: coordinates. But the above relations giving a* and Det(a*) also remain valid
& -

N with (vL} replacing {vL} because the only property used in conjunction with

! these systems has been their Cartesian nature. Accordingly, the formula (A4.2a)
Ti likewise remains valid with {VL} replacing {GL}. This deduction makes one ’
;{ appreciate the fact that although (A4.2a) was derived with an upper-triangular

Jacobian matrix [dv/8u], it now holds with a general Jacobian matrix [3v/3u]. )

A x
@ The equivalent relations (A4.2a,b) can thus be written in conjunction with
o ] L

H a general Cartesian system {v )} as
by

v = [Det [3v/au]|duldu®du® = [Det (a*)}!/2dulduau’® . (A4.3)

- This formula results in the following transformation of triple integrals:

2.

e

~ fevtyav = fe(vl)aviavia® = serr(el)) (et(a*) )} Pautau®an® . (ad.4)
" v \% U

|

L L L -1, L .

. where the relations v =F{(u ) or u =F (v '), L=1,2,3, describe the transformation
,? of coordinates which maps the region V into U. Consistent with the philosophy
;: maintained throughout this appendix, equation (A4.4) is applicable also to the
. transformation of double as well as multiple integrals in any dimensions.
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